Snake Mackerel – An Isogeny Based AKEM

Jonas Janneck¹, **Jonas Meers**¹, Massimo Ostuzzi¹, Doreen Riepel²

¹Ruhr University Bochum ²CISPA Saarbrücken

Swiss Isogeny Day 2025

AKEM

 $\begin{array}{c} \mathbf{A} \text{uthenticated } \mathbf{K} \text{ey} \\ \mathbf{E} \text{ncapsulation } \mathbf{M} \text{echanism} \end{array}$

ightharpoonup Confidentiality: Only Alice and Bob know k

- \blacktriangleright Confidentiality: Only Alice and Bob know k
- ► Authenticity: Bob knows that Alice sent ct

- ightharpoonup Confidentiality: Only Alice and Bob know k
- ▶ Authenticity: Bob knows that Alice sent ct
- ▶ Deniability: Judie cannot be convinced that Alice sent ct

► KEM + (Ring) Signature (FrodoKEX+[CHN⁺24a], Gandalf-AKEM[GJK24])

- $\blacktriangleright \ \mathbf{KEM} + \mathbf{(Ring)} \ \mathbf{Signature} \ (\mathbf{FrodoKEX} + [\mathbf{CHN}^+24\mathbf{a}], \ \mathbf{Gandalf} \mathbf{AKEM} \ [\mathbf{GJK24}])$
- \blacktriangleright Double NIKE (DH, CSIDH) [AJKL23]

- $\blacktriangleright \ \mathbf{KEM} + \mathbf{(Ring)} \ \mathbf{Signature} \ (\mathbf{FrodoKEX} + [\mathbf{CHN}^+24\mathbf{a}], \ \mathbf{Gandalf} \mathbf{AKEM} \ [\mathbf{GJK24}])$
- ▶ Double NIKE (DH, CSIDH) [AJKL23]
- ▶ This Work: Split Ciphertext KEM + Identification Scheme (DH-AKEM [ABF12], SnakeM)

- ► KEM + (Ring) Signature (FrodoKEX+[CHN⁺24a], Gandalf-AKEM[GJK24])
- ▶ Double NIKE (DH, CSIDH) [AJKL23]
- ▶ This Work: Split Ciphertext KEM + Identification Scheme (DH-AKEM [ABF12], SnakeM)

Split Ciphertext KEM \neq Split KEM

- ► KEM + (Ring) Signature (FrodoKEX+ [CHN⁺24a], Gandalf-AKEM [GJK24])
- ▶ Double NIKE (DH, CSIDH) [AJKL23]
- ▶ This Work: Split Ciphertext KEM + Identification Scheme (DH-AKEM [ABF12], SnakeM)

A Split Ciphertext KEM ≠ Split KEM

Split Ciphertext KEM

Given ID-Scheme ID, a Split Ciphertext KEM KEM requires

$$(\mathsf{ct},k) \overset{\$}{\leftarrow} \mathsf{KEM}.\mathsf{Enc}(\mathsf{pk}), \quad \mathsf{ct} = (\mathsf{ct}_0,\mathsf{ct}_1), \quad \mathsf{ct}_0 \in \mathrm{Im}(\mathsf{ID}.\mathsf{Com}).$$

- ► KEM + (Ring) Signature (FrodoKEX+[CHN+24a], Gandalf-AKEM[GJK24])
- ▶ Double NIKE (DH, CSIDH) [AJKL23]
- ▶ This Work: Split Ciphertext KEM + Identification Scheme (DH-AKEM [ABF12], SnakeM)

Split Ciphertext KEM

Given ID-Scheme ID, a Split Ciphertext KEM KEM requires

$$(\mathsf{ct},k) \stackrel{\$}{\leftarrow} \mathsf{KEM}.\mathsf{Enc}(\mathsf{pk}), \quad \mathsf{ct} = (\mathsf{ct}_0,\mathsf{ct}_1), \quad \mathsf{ct}_0 \in \mathrm{Im}(\mathsf{ID}.\mathsf{Com}).$$

 \Rightarrow Reusing the commitment leads to a \mathbf{more} $\mathbf{compact}$ \mathbf{scheme} than plain KEM + Signature

- ▶ KEM + (Ring) Signature (FrodoKEX+ [CHN⁺24a], Gandalf-AKEM [GJK24])
- ▶ Double NIKE (DH, CSIDH) [AJKL23]
- ▶ This Work: Split Ciphertext KEM + Identification Scheme (DH-AKEM [ABF12], SnakeM)

A Split Ciphertext KEM ≠ Split KEM

Split Ciphertext KEM

Given ID-Scheme ID, a Split Ciphertext KEM KEM requires

$$(\mathsf{ct},k) \stackrel{\$}{\leftarrow} \mathsf{KEM}.\mathsf{Enc}(\mathsf{pk}), \quad \mathsf{ct} = (\mathsf{ct}_0,\mathsf{ct}_1), \quad \mathsf{ct}_0 \in \mathrm{Im}(\mathsf{ID}.\mathsf{Com}).$$

- ⇒ Reusing the commitment leads to a more compact scheme than plain KEM + Signature
- ⇒ Our generic construction SnakeM can be instantiated from isogenies

- ▶ KEM + (Ring) Signature (FrodoKEX+ [CHN⁺24a], Gandalf-AKEM [GJK24])
- ▶ Double NIKE (DH, CSIDH) [AJKL23]
- ▶ This Work: Split Ciphertext KEM + Identification Scheme (DH-AKEM [ABF12], SnakeM)

A Split Ciphertext KEM ≠ Split KEM

Split Ciphertext KEM

Given ID-Scheme ID, a Split Ciphertext KEM KEM requires

$$(\mathsf{ct},k) \stackrel{\$}{\leftarrow} \mathsf{KEM}.\mathsf{Enc}(\mathsf{pk}), \quad \mathsf{ct} = (\mathsf{ct}_0,\mathsf{ct}_1), \quad \mathsf{ct}_0 \in \mathrm{Im}(\mathsf{ID}.\mathsf{Com}).$$

- ⇒ Reusing the commitment leads to a more compact scheme than plain KEM + Signature
- ⇒ Our generic construction SnakeM can be instantiated from isogenies
- ⇒ SnakeM is only 5× larger than DH-AKEM (64 vs. 296 Bytes) naive approach 370 Bytes

SQIsignHD and POKÉ use primes $p=c2^a3^b-1$, but with different sizes POKÉ: $3^b\approx 2^{2\lambda}$ SQIsignHD: $3^b\approx 2^\lambda$

SQIsignHD and POKÉ use primes
$$p = c2^a3^b - 1$$
, but with different sizes

POKÉ:
$$3^b \approx 2^{2\lambda}$$
 SQIsignHD: $3^b \approx 2^{\lambda}$

SQIsignHD:
$$3^b \approx$$

$$(p+1)(p-1)=2^aND, \qquad 2^a\in\mathcal{O}(2^\lambda), \qquad N=\prod\ell_i\in\mathcal{O}(2^{2\lambda}), \qquad D=q_1q_2q_3\in\mathcal{O}(2^\lambda)$$

SQIsignHD and POKÉ use primes $p = c2^a3^b - 1$, but with different sizes

POKÉ:
$$3^b \approx 2^{2\lambda}$$

POKÉ:
$$3^b \approx 2^{2\lambda}$$
 SQIsignHD: $3^b \approx 2^{\lambda}$

$$(p+1)(p-1) = 2^a ND$$
, $2^a \in \mathcal{O}(2^{\lambda})$, $N = \prod \ell_i \in \mathcal{O}(2^{2\lambda})$, $D = q_1 q_2 q_3 \in \mathcal{O}(2^{\lambda})$

$$\underbrace{N = \prod \ell_i \in \mathcal{O}(2^{2\lambda})}_{\text{rational isogenies}}$$

$$D = q_1 q_2 q_3 \in \mathcal{O}(2^{\lambda})$$
shared key

SQIsignHD and POKÉ use primes $p = c2^a3^b - 1$, but with different sizes

POKÉ:
$$3^b \approx 2^{2\lambda}$$
 SQIsignHD: $3^b \approx 2^{\lambda}$

SQIsignHD:
$$3^b$$

$$(p+1)(p-1) = 2^a ND$$
, $2^a \in \mathcal{O}(2^{\lambda})$, $N = \prod \ell_i \in \mathcal{O}(2^{2\lambda})$, $D = q_1 q_2 q_3 \in \mathcal{O}(2^{\lambda})$

$$N = \prod_{\text{rational isogenies}} \ell_i \in \mathcal{O}(2^{2\lambda}), \qquad \underbrace{D = q_1 q_2 q_3 \in \mathcal{O}(2^{\lambda})}_{\text{shared key}}$$

- ► Commitment isogenv is now rational
 - ▶ $N \in \mathcal{O}(p)$ to ensure **good distribution** of the commitment curve

SQIsignHD and POKÉ use primes $p = c2^a3^b - 1$, but with different sizes

POKÉ:
$$3^b \approx 2^{2\lambda}$$

POKÉ:
$$3^b \approx 2^{2\lambda}$$
 SQIsignHD: $3^b \approx 2^{\lambda}$

$$(p+1)(p-1) = 2^a ND$$
, $2^a \in \mathcal{O}(2^{\lambda})$, $N = \prod \ell_i \in \mathcal{O}(2^{2\lambda})$, $D = q_1 q_2 q_3 \in \mathcal{O}(2^{\lambda})$

$$\underbrace{D = q_1 q_2 q_3 \in \mathcal{O}(2^{\lambda})}_{\text{shared key}}$$

- ► Commitment isogenv is now rational
 - ▶ $N \in \mathcal{O}(p)$ to ensure **good distribution** of the commitment curve
- ▶ D smooth enough to allow for point compression

Compatibility

SQIsignHD and POKÉ use primes $p = c2^a3^b - 1$, but with different sizes

POKÉ:
$$3^b \approx 2^{2\lambda}$$
 SQIsignHD: $3^b \approx 2^{\lambda}$

Use **B-SIDH** approach for a more compact scheme with $p \in \mathcal{O}(2^{2\lambda})$

$$(p+1)(p-1) = 2^a ND$$
, $2^a \in \mathcal{O}(2^{\lambda})$, $N = \prod \ell_i \in \mathcal{O}(2^{2\lambda})$, $D = q_1 q_2 q_3 \in \mathcal{O}(2^{\lambda})$ shared key

- ► Commitment isogeny is now rational
 - ▶ $N \in \mathcal{O}(p)$ to ensure **good distribution** of the commitment curve
- ▶ D smooth enough to allow for **point compression**

$$p = 2^{133} \cdot 3^6 \cdot 7^2 \cdot 17^4 \cdot 47^2 \cdot 311^2 \cdot 367^2 \cdot 439^2 \cdot 1049^2 \cdot 1373 - 1$$
$$\log p = 247, \qquad \max\{\ell_i\} = 1373, \qquad \max\{\log q_i\} = 39$$

Security

The Best out of Both Worlds?

$$(\mathsf{sk}^\star,\mathsf{pk}^\star) \xleftarrow{\$} \mathsf{Gen}$$

$$(\mathsf{sk}^\star,\mathsf{pk}^\star) \xleftarrow{\$} \mathsf{Gen}$$

pk*

$$(\mathsf{sk}^\star,\mathsf{pk}^\star) \xleftarrow{\$} \mathsf{Gen}$$

$$(\mathsf{sk}^\star,\mathsf{pk}^\star) \overset{\$}{\leftarrow} \mathsf{Gen} \qquad \qquad \mathsf{pk}^\star$$

$$\beta \overset{\$}{\leftarrow} \{0,1\}$$

$$(\mathsf{ct},k) \overset{\$}{\leftarrow} \mathsf{Encaps}(\mathsf{sk},\mathsf{pk}^\star)$$

$$\mathsf{if} \ \beta = 1$$

$$k \leftarrow \$$$

$$\mathsf{Challenger}$$

$$\mathsf{win} \ \mathsf{if} \ b = b'$$

Note

sk is used for the signature and should not help to decapsulate the KEM part of ct

Theorem

For any Ins-CCA adversary $\mathcal A$ against SnakeM, there exist an adversary $\mathcal B$ against OW-KCA of POKÉ such that

$$\mathsf{Adv}^{\mathsf{Ins\text{-}CCA}}_{\mathrm{SnakeM}}(\mathcal{A}) \leq \mathsf{Adv}^{\mathsf{OW\text{-}KCA}}_{\mathrm{POK\acute{E}}}(\mathcal{B}) + \delta.$$

Theorem

For any Ins-CCA adversary $\mathcal A$ against SnakeM, there exist an adversary $\mathcal B$ against OW-KCA of POKÉ such that

$$\mathsf{Adv}^{\mathsf{Ins\text{-}CCA}}_{\mathrm{SnakeM}}(\mathcal{A}) \leq \mathsf{Adv}^{\mathsf{OW\text{-}KCA}}_{\mathrm{POK}\acute{\mathrm{E}}}(\mathcal{B}) + \delta.$$

▶ OW-KCA: Compute the shared key given access to an **key-checking** oracle

$$\mathcal{O}^{\mathsf{kc}}(\mathsf{ct}, k) \to 1$$
 if ct contains key k

Theorem

For any Ins-CCA adversary $\mathcal A$ against SnakeM, there exist an adversary $\mathcal B$ against OW-KCA of POKÉ such that

$$\mathsf{Adv}^{\mathsf{Ins\text{-}CCA}}_{\mathrm{SnakeM}}(\mathcal{A}) \leq \mathsf{Adv}^{\mathsf{OW\text{-}KCA}}_{\mathrm{POK}\acute{\mathrm{E}}}(\mathcal{B}) + \delta.$$

 \blacktriangleright OW-KCA: Compute the shared key given access to an $\mathbf{key\text{-}checking}$ oracle

$$\mathcal{O}^{\mathsf{kc}}(\mathsf{ct}, k) \to 1$$
 if ct contains key k

Why OW-KCA when POKÉ is IND-CCA secure?

Theorem

For any Ins-CCA adversary $\mathcal A$ against SnakeM, there exist an adversary $\mathcal B$ against OW-KCA of POKÉ such that

$$\mathsf{Adv}^{\mathsf{Ins\text{-}CCA}}_{\mathrm{SnakeM}}(\mathcal{A}) \leq \mathsf{Adv}^{\mathsf{OW\text{-}KCA}}_{\mathrm{POK}\acute{\mathrm{E}}}(\mathcal{B}) + \delta.$$

▶ OW-KCA: Compute the shared key given access to an **key-checking** oracle

$$\mathcal{O}^{\mathsf{kc}}(\mathsf{ct}, k) \to 1$$
 if ct contains key k

Why $\mathsf{OW}\text{-}\mathsf{KCA}$ when POKE is $\mathsf{IND}\text{-}\mathsf{CCA}$ secure? We cannot use $\mathbf{Fujisaki}\text{-}\mathsf{Okamoto}\ \mathbf{Transform}: ($

Theorem

For any Ins-CCA adversary $\mathcal A$ against SnakeM, there exist an adversary $\mathcal B$ against OW-KCA of POKÉ such that

$$\mathsf{Adv}^{\mathsf{Ins\text{-}CCA}}_{\mathrm{SnakeM}}(\mathcal{A}) \leq \mathsf{Adv}^{\mathsf{OW\text{-}KCA}}_{\mathrm{POK}\acute{\mathrm{E}}}(\mathcal{B}) + \delta.$$

▶ OW-KCA: Compute the shared key given access to an key-checking oracle

$$\mathcal{O}^{\mathsf{kc}}(\mathsf{ct}, k) \to 1$$
 if ct contains key k

Why $\mathsf{OW}\text{-}\mathsf{KCA}$ when POKE is $\mathsf{IND}\text{-}\mathsf{CCA}$ secure? We cannot use $\mathsf{Fujisaki}\text{-}\mathsf{Okamoto}$ Transform :(

Fujisaki-Okamoto Transform [FO99, HHK17]

$$IND-CPA \xrightarrow{T-Transform} OW-KCA \xrightarrow{U-Transform} IND-CCA$$

Theorem

For any Ins-CCA adversary $\mathcal A$ against SnakeM, there exist an adversary $\mathcal B$ against OW-KCA of POKÉ such that

$$\mathsf{Adv}^{\mathsf{Ins\text{-}CCA}}_{\mathrm{SnakeM}}(\mathcal{A}) \leq \mathsf{Adv}^{\mathsf{OW\text{-}KCA}}_{\mathrm{POK}\acute{\mathrm{E}}}(\mathcal{B}) + \delta.$$

▶ OW-KCA: Compute the shared key given access to an key-checking oracle

$$\mathcal{O}^{\mathsf{kc}}(\mathsf{ct}, k) \to 1$$
 if ct contains key k

Why $\mathsf{OW}\text{-}\mathsf{KCA}$ when POKE is $\mathsf{IND}\text{-}\mathsf{CCA}$ secure? We cannot use $\mathsf{Fujisaki}\text{-}\mathsf{Okamoto}$ Transform :(

Fujisaki-Okamoto Transform [FO99, HHK17]

$$\begin{array}{ccc}
\text{IND-CPA} & \xrightarrow{\text{T-Transform}} & \text{OW-KCA} & \xrightarrow{\text{U-Transform}} & \text{IND-CCA}
\end{array}$$

ightharpoonup T-Transform makes the encryption randomness $\mathbf{explicit} \Longrightarrow \mathrm{leaks} \ \mathbf{commitment}$

Theorem

For any Ins-CCA adversary $\mathcal A$ against SnakeM, there exist an adversary $\mathcal B$ against OW-KCA of POKÉ such that

$$\mathsf{Adv}^{\mathsf{Ins\text{-}CCA}}_{\mathrm{SnakeM}}(\mathcal{A}) \leq \mathsf{Adv}^{\mathsf{OW\text{-}KCA}}_{\mathrm{POK}\acute{\mathrm{E}}}(\mathcal{B}) + \delta.$$

▶ OW-KCA: Compute the shared key given access to an key-checking oracle

$$\mathcal{O}^{\mathsf{kc}}(\mathsf{ct},k) \to 1$$
 if ct contains key k

Why $\mathsf{OW}\text{-}\mathsf{KCA}$ when POKE is $\mathsf{IND}\text{-}\mathsf{CCA}$ secure? We cannot use $\mathsf{Fujisaki}\text{-}\mathsf{Okamoto}$ Transform :(

Fujisaki-Okamoto Transform [FO99, HHK17]

$$\begin{array}{ccc}
\text{IND-CPA} & \xrightarrow{\text{T-Transform}} & \text{OW-KCA} & \xrightarrow{\text{U-Transform}} & \text{IND-CCA}
\end{array}$$

- ▶ T-Transform makes the encryption randomness explicit ⇒ leaks commitment
- ▶ We include checks to avoid adaptive attacks like [GPST16, MOXZ24]

$$(\mathsf{sk}^\star,\mathsf{pk}^\star) \xleftarrow{\$} \mathsf{Gen}$$

$$(\mathsf{sk}^\star,\mathsf{pk}^\star) \xleftarrow{\$} \mathsf{Gen}$$

pk*

$$(sk^{\star},pk^{\star}) \overset{\$}{\leftarrow} \mathsf{Gen}$$

$$\mathsf{I'm\ ready!}$$

$$\mathsf{Challenger}$$

$$\mathsf{Adversary}$$

$$(\mathsf{sk}^\star,\mathsf{pk}^\star) \overset{\$}{\leftarrow} \mathsf{Gen} \qquad \qquad \mathsf{pk}^\star$$

$$\mathbf{if} \ \mathsf{ct} \ \mathbf{not} \ \mathbf{fresh} : \\ \mathbf{abort} \\ k \overset{\$}{\leftarrow} \mathsf{Decaps}(\mathsf{pk}^\star,\mathsf{sk},\mathsf{ct}) \\ \mathbf{win} \ \mathbf{if} \ k \neq \bot \qquad \qquad \mathsf{Challenger}$$

Note

An honest Decaps checks the signature against pk^* and returns \perp if the signature is invalid

Observation

For Ins-Auth the signature needs to be **non-malleable**

$$\mathsf{ct} = (\mathsf{ct}_\mathsf{KEM}, \sigma) \qquad \Longrightarrow \qquad \mathsf{ct}' = (\mathsf{ct}_\mathsf{KEM}, \sigma')$$

Observation

For Ins-Auth the signature needs to be non-malleable

$$ct = (ct_{KEM}, \sigma) \implies ct' = (ct_{KEM}, \sigma')$$

In SQIsignHD, the signature is **interpolation data** $\sigma = (q, U', V')$

Observation

For Ins-Auth the signature needs to be **non-malleable**

$$ct = (ct_{KEM}, \sigma) \implies ct' = (ct_{KEM}, \sigma')$$

In SQIsignHD, the signature is **interpolation data** $\sigma = (q, U', V')$

Observation

For Ins-Auth the signature needs to be **non-malleable**

$$ct = (ct_{KEM}, \sigma) \implies ct' = (ct_{KEM}, \sigma')$$

In SQIsignHD, the signature is **interpolation data** $\sigma = (q, U', V')$

▶ If $n^2q \leq 2^a$, then $\sigma' = (\mathbf{n^2}q, [\mathbf{n}]U', [\mathbf{n}]V')$ is a valid signature too

Observation

For Ins-Auth the signature needs to be **non-malleable**

$$\mathsf{ct} = (\mathsf{ct}_\mathsf{KEM}, \sigma) \qquad \Longrightarrow \qquad \mathsf{ct}' = (\mathsf{ct}_\mathsf{KEM}, \sigma')$$

In SQIsignHD, the signature is **interpolation data** $\sigma = (q, U', V')$

- ▶ If $n^2q \leq 2^a$, then $\sigma' = (\mathbf{n^2}q, [\mathbf{n}]U', [\mathbf{n}]V')$ is a valid signature too
- \blacktriangleright Checking square-freeness of q is not enough as φ_{rsp} may contain a **cyclic** ℓ^m -isogeny

Observation

For Ins-Auth the signature needs to be **non-malleable**

$$ct = (ct_{KEM}, \sigma) \implies ct' = (ct_{KEM}, \sigma')$$

In SQIsignHD, the signature is **interpolation data** $\sigma = (q, U', V')$

- ▶ If $n^2q \leq 2^a$, then $\sigma' = (\mathbf{n^2}q, [\mathbf{n}]U', [\mathbf{n}]V')$ is a valid signature too
- \blacktriangleright Checking square-freeness of q is not enough as φ_{rsp} may contain a **cyclic** ℓ^m -isogeny

⇒ Non-Malleable version of SQIsignHD?

It would be desirable to ${f check}$ ${f cyclicity}$ of HD-represented isogenies

It would be desirable to ${f check}$ ${f cyclicity}$ of HD-represented isogenies

Bad News

So far, a generic cyclicity check seems out of reach

It would be desirable to ${f check}$ ${f cyclicity}$ of HD-represented isogenies

Bad News

So far, a generic cyclicity check seems out of reach $\,$

Good News

We don't need a generic cyclicity check!

It would be desirable to **check cyclicity** of HD-represented isogenies

Bad News

So far, a generic cyclicity check seems out of reach

Good News

We don't need a generic cyclicity check!

Idea:

▶ During signing: require **minimum length** $q \ge 2^a/\log p$

It would be desirable to check cyclicity of HD-represented isogenies

Bad News

So far, a generic cyclicity check seems out of reach

Good News

We don't need a generic cyclicity check!

Idea:

▶ During signing: require **minimum length** $q \ge 2^a/\log p$

It would be desirable to **check cyclicity** of HD-represented isogenies

Bad News

So far, a generic cyclicity check seems out of reach

Good News

We don't need a generic cyclicity check!

- ▶ During signing: require **minimum length** $q \ge 2^a/\log p$
- ▶ During verification: evaluate φ_{rsp} on $E_{\mathsf{com}}[n]$ for all prime $n \leq \sqrt{\log p}$ and see if it vanishes

It would be desirable to **check cyclicity** of HD-represented isogenies

Bad News

So far, a generic cyclicity check seems out of reach

Good News

We don't need a generic cyclicity check!

- ▶ During signing: require **minimum length** $q \ge 2^a/\log p$
- ▶ During verification: evaluate φ_{rsp} on $E_{\mathsf{com}}[n]$ for all prime $n \leq \sqrt{\log p}$ and see if it vanishes
 - ▶ cannot append small scalar multiplication

It would be desirable to check cyclicity of HD-represented isogenies

Bad News

So far, a generic cyclicity check seems out of reach

Good News

We don't need a generic cyclicity check!

- ▶ During signing: require **minimum length** $q \ge 2^a/\log p$
- ▶ During verification: evaluate φ_{rsp} on $E_{\mathsf{com}}[n]$ for all prime $n \leq \sqrt{\log p}$ and see if it vanishes
 - ► cannot append small scalar multiplication
- \blacktriangleright Large(r) scalar multiplication already **exceeds** the available 2^a -torsion

It would be desirable to check cyclicity of HD-represented isogenies

Bad News

So far, a generic cyclicity check seems out of reach

Good News

We don't need a generic cyclicity check!

- ▶ During signing: require **minimum length** $q \ge 2^a/\log p$
- ▶ During verification: evaluate φ_{rsp} on $E_{\mathsf{com}}[n]$ for all prime $n \leq \sqrt{\log p}$ and see if it vanishes
 - ► cannot append small scalar multiplication
- ightharpoonup Large(r) scalar multiplication already exceeds the available 2^a -torsion
- ► Experiments suggest: rejection probability 1/1000

It would be desirable to check cyclicity of HD-represented isogenies

Bad News

So far, a generic cyclicity check seems out of reach

Good News

We don't need a generic cyclicity check!

Idea:

- ▶ During signing: require **minimum length** $q \ge 2^a/\log p$
- ▶ During verification: evaluate φ_{rsp} on $E_{\mathsf{com}}[n]$ for all prime $n \leq \sqrt{\log p}$ and see if it vanishes
 - ► cannot append small scalar multiplication
- \blacktriangleright Large(r) scalar multiplication already exceeds the available 2^a -torsion
- ► Experiments suggest: rejection probability 1/1000

Non-Malleability of SQIsignHD

For any NM adversary $\mathcal A$ against a *slight modification* of SQIsignHD, there exist adversaries $\mathcal B$ against OneEnd and $\mathcal C$ against Cyclic RUGDIO indistinguishability (CR-IND) such that

$$\mathsf{Adv}^{\mathsf{NM}}(\mathcal{A}) \leq \mathsf{Adv}^{\mathsf{OneEnd}}(\mathcal{B}) + \mathit{q}_{\mathsf{Trans}} \cdot \mathsf{Adv}^{\mathsf{CR-IND}}(\mathcal{C}).$$

Theorem

$$\mathsf{Adv}^{\mathsf{Ins-Aut}}_{\mathrm{SnakeM}}(\mathcal{A}) \leq + \mathsf{Adv}^{\mathsf{SS-Enc}}_{\mathrm{POK\acute{E}}, \mathrm{SQIsignHD}}(\mathcal{B}) + \mathsf{Adv}^{\mathsf{NM-Enc}}_{\mathrm{POK\acute{E}}, \mathrm{SQIsignHD}}(\mathcal{C}) + \delta.$$

Theorem

For any Ins-Aut adversary $\mathcal A$ against SnakeM, there exist an adversary $\mathcal B$ against SS-Enc and an adversary $\mathcal C$ against NM-Enc such that

$$\mathsf{Adv}^{\mathsf{Ins-Aut}}_{\mathrm{SnakeM}}(\mathcal{A}) \leq + \mathsf{Adv}^{\mathsf{SS-Enc}}_{\mathrm{POK\acute{E}}, \mathrm{SQIsignHD}}(\mathcal{B}) + \mathsf{Adv}^{\mathsf{NM-Enc}}_{\mathrm{POK\acute{E}}, \mathrm{SQIsignHD}}(\mathcal{C}) + \delta.$$

▶ NM: Given pk_{ID} and transcripts $\mathcal{T} = \{(com_i, chal_i, rsp_i)\}$, compute $(com', chal', rsp') \notin \mathcal{T}$

Theorem

$$\mathsf{Adv}^{\mathsf{Ins-Aut}}_{\mathrm{SnakeM}}(\mathcal{A}) \leq + \mathsf{Adv}^{\mathsf{SS-Enc}}_{\mathrm{POK\acute{E}},\mathrm{SQIsignHD}}(\mathcal{B}) + \mathsf{Adv}^{\mathsf{NM-Enc}}_{\mathrm{POK\acute{E}},\mathrm{SQIsignHD}}(\mathcal{C}) + \delta.$$

- ▶ NM: Given pk_{ID} and transcripts $\mathcal{T} = \{(com_i, chal_i, rsp_i)\}$, compute $(com', chal', rsp') \notin \mathcal{T}$
- \blacktriangleright NM-Enc: Additional Enc oracle that provides a consistent "POKÉ part" of the SnakeM ciphertext:

Theorem

$$\mathsf{Adv}^{\mathsf{Ins-Aut}}_{\mathrm{SnakeM}}(\mathcal{A}) \leq + \mathsf{Adv}^{\mathsf{SS-Enc}}_{\mathrm{POK\acute{E}},\mathrm{SQIsignHD}}(\mathcal{B}) + \mathsf{Adv}^{\mathsf{NM-Enc}}_{\mathrm{POK\acute{E}},\mathrm{SQIsignHD}}(\mathcal{C}) + \delta.$$

- ▶ NM: Given pk_{ID} and transcripts $\mathcal{T} = \{(com_i, chal_i, rsp_i)\}$, compute $(com', chal', rsp') \notin \mathcal{T}$
- \blacktriangleright NM-Enc: Additional Enc oracle that provides a consistent "POKÉ part" of the SnakeM ciphertext:

Theorem

$$\mathsf{Adv}^{\mathsf{Ins-Aut}}_{\mathrm{SnakeM}}(\mathcal{A}) \leq + \mathsf{Adv}^{\mathsf{SS-Enc}}_{\mathrm{POK\acute{E}},\mathrm{SQIsignHD}}(\mathcal{B}) + \mathsf{Adv}^{\mathsf{NM-Enc}}_{\mathrm{POK\acute{E}},\mathrm{SQIsignHD}}(\mathcal{C}) + \delta.$$

- ▶ NM: Given pk_{ID} and transcripts $\mathcal{T} = \{(com_i, chal_i, rsp_i)\}$, compute $(com', chal', rsp') \notin \mathcal{T}$
- ▶ NM-Enc: Additional Enc oracle that provides a consistent "POKÉ part" of the SnakeM ciphertext:

Theorem

$$\mathsf{Adv}^{\mathsf{Ins-Aut}}_{\mathrm{SnakeM}}(\mathcal{A}) \leq + \mathsf{Adv}^{\mathsf{SS-Enc}}_{\mathrm{POK\acute{E}},\mathrm{SQIsignHD}}(\mathcal{B}) + \mathsf{Adv}^{\mathsf{NM-Enc}}_{\mathrm{POK\acute{E}},\mathrm{SQIsignHD}}(\mathcal{C}) + \delta.$$

- ▶ NM: Given pk_{ID} and transcripts $\mathcal{T} = \{(com_i, chal_i, rsp_i)\}$, compute $(com', chal', rsp') \notin \mathcal{T}$
- ▶ NM-Enc: Additional Enc oracle that provides a consistent "POKÉ part" of the SnakeM ciphertext:

Compactness – Is It Worth It?

Scheme (variant)	Confidentiality	Authenticity	Deniability	PQ	Size (in bytes)	
					ct	pk
Group-based						
DH-AKEM [ABH ⁺ 21]	Ins-CCA	Out-Aut	\mathbf{DR}^*	×	32	32
Zheng [Zhe97, BSZ02]	Ins-CCA	Ins-Aut	HR*	Х	64	64
Lattice-based						
ETSTH-AKEM (BAT + ANTRAG) [AJKL23]	Ins-CCA	Out-Aut	_	1	1 119	1 417
NIKE-AKEM (Swoosh) [AJKL23]	Ins-CCA	Out-Aut	DR*	1	> 221 184	> 221 184
Eanth-Akem (Bat + Swoosh)	Ins-CCA	Out-Aut	DR*	1	473	> 221 705
FrodoKEX+ [CHN ⁺ 24b]	IND-1BatchCCA	UNF-1KCA	DR	1	72	21 300
Den. AKEM (BAT + Gandalf) [GJK24]	Ins-CCA	Out-Aut	HR & DR	✓	1 749	1 417
Isogeny-based						
ETSTH-AKEM (POKÉ + SQISIGNHD) [AJKL23]	Ins-CCA	Out-Aut	_	1	493	432
NIKE-AKEM (CSIDH) [AJKL23]	Ins-CCA	Out-Aut	DR*	1	256^{\dagger}	256^{\dagger}
EANTH-AKEM (POKÉ + CSIDH)	Ins-CCA	Out-Aut	\mathbf{DR}^*	1	384	624
Den. AKEM (POKÉ + Erebor) [GJK24]	Ins-CCA	Out-Aut	HR & DR	/	740	432
SnakeM	Ins-CCA	Ins-Aut	HR	/	296	368

Open Questions

Cryptanalysis

- ► OW-KCA of POKÉ + Countermeasures
- ▶ Additional Enc oracle in SS and NM

Other Constructions

 \blacktriangleright Though there are already some ideas...

Better Security Proof

- \blacktriangleright Reduce NM-Enc and SS-Enc to (more) standard assumptions
- ▶ Maybe in an Algebraic Isogeny Model

Questions?

™ meers.org ™ research@meers.org

References I

- [ABF12] Afonso Arriaga, Manuel Barbosa, and Pooya Farshim. On the joint security of signature and encryption schemes under randomness reuse: Efficiency and security amplification. pages 206–223, 2012.
- [ABH+21] Joël Alwen, Bruno Blanchet, Eduard Hauck, Eike Kiltz, Benjamin Lipp, and Doreen Riepel. Analysing the HPKE standard. pages 87–116, 2021.
- [AJKL23] Joël Alwen, Jonas Janneck, Eike Kiltz, and Benjamin Lipp. The pre-shared key modes of HPKE. pages 329–360, 2023.
 - [BSZ02] Joonsang Baek, Ron Steinfeld, and Yuliang Zheng. Formal proofs for the security of signcryption. pages 80–98, 2002.
- [CHN+24a] Daniel Collins, Loïs Huguenin-Dumittan, Ngoc Khanh Nguyen, Nicolas Rolin, and Serge Vaudenay. K-waay: Fast and deniable post-quantum X3DH without ring signatures. 2024.
- [CHN+24b] Daniel Collins, Loïs Huguenin-Dumittan, Ngoc Khanh Nguyen, Nicolas Rolin, and Serge Vaudenay. K-waay: Fast and deniable post-quantum X3DH without ring signatures. Cryptology ePrint Archive, Report 2024/120, 2024.
 - [FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption schemes. pages 537–554, 1999.

References II

- [GJK24] Phillip Gajland, Jonas Janneck, and Eike Kiltz. Ring signatures for deniable AKEM: Gandalf's fellowship. pages 305–338, 2024.
- [GPST16] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On the security of supersingular isogeny cryptosystems. pages 63–91, 2016.
 - [HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the Fujisaki-Okamoto transformation. pages 341–371, 2017.
- [MOXZ24] Tomoki Moriya, Hiroshi Onuki, Maozhi Xu, and Guoqing Zhou. Adaptive attacks against FESTA without input validation or constant-time implementation. pages 3–19, 2024.
 - [Zhe97] Yuliang Zheng. Digital sign cryption or how to achieve cost(signature & encryption) \ll cost(signature) + cost(encryption). pages 165–179, 1997.

SnakeM in Detail

```
SnakeM.Gen
                                                                                    SnakeM.Decaps(pk_{SND}, sk_{RCV}, ct)
00 (sk<sub>KEM</sub>, pk<sub>KEM</sub>) \stackrel{\$}{\leftarrow} KEM.Gen
                                                                                    18 parse pk_{SND} = (\cdot, pk_{ID})
01 (sk<sub>ID</sub>, pk<sub>ID</sub>) \stackrel{\$}{\leftarrow} ID.Gen
                                                                                    19 parse sk_{RCV} = (sk_{KEM}, \cdot, s)
02 s \stackrel{\$}{\leftarrow} \{0,1\}^{\eta}
                                                                                   20 parse ct = (com, ct_1, ct_{rsp})
03 sk \leftarrow (sk<sub>KEM</sub>, sk<sub>ID</sub>, s)
                                                                                   21 pk_{RCV} \leftarrow derive(sk_{RCV})
04 pk \leftarrow (pk<sub>KEM</sub>, pk<sub>ID</sub>)
                                                                                   22 K \leftarrow \mathsf{KEM}.\mathsf{Decaps}(\mathsf{sk}_{\mathsf{KEM}},\mathsf{com},\mathsf{ct}_1)
                                                                                   23 if K = \bot
05 return (sk.pk)
                                                                                                                                              \\ Decaps may fail
                                                                                   24 K \leftarrow s
SnakeM.Encaps(sk<sub>SND</sub>, pk<sub>RCV</sub>)
                                                                                   25 (chl, pad) \leftarrow G(pk<sub>ID</sub>, com, pk<sub>RCV</sub>, ct<sub>1</sub>, K)
06 parse sk_{SND} = (\cdot, sk_{ID}, \cdot)
                                                                                   26 rsp \leftarrow ct<sub>rsp</sub> \oplus pad
07 parse pk_{PCV} = (pk_{KEM}, \cdot)
                                                                                   27 if ID.Ver(pk_{ID}, com, chl, rsp) = 1:
08 pk_{ID} \leftarrow derive(sk_{ID})
                                                                                   28 k \leftarrow H(K, com, ct_1, rsp, pk_{SND}, pk_{PCV})
09 pk_{SND} \leftarrow derive(sk_{SND})
                                                                                   29 return k
10 (com, R) \stackrel{\$}{\leftarrow} ID.Com
                                                          \% com = ct_0 30 return \bot
11 (\mathsf{ct}_1, K) \overset{\$}{\leftarrow} \mathsf{KEM}.\mathsf{Encaps}_1(\mathsf{pk}_{\mathsf{KEM}}, R)
12 (chl, pad) \leftarrow G(pk_{ID}, com, pk_{PCV}, ct_1, K)
13 rsp \stackrel{\$}{\leftarrow} ID.Rsp(sk<sub>ID</sub>, com, chl, R)
14 ct_{rsp} \leftarrow rsp \oplus pad
15 ct \leftarrow (com, ct<sub>1</sub>, ct<sub>rsp</sub>)
16 k \leftarrow H(K, com, ct_1, rsp, pk_{snp}, pk_{pcv})
17 return (ct. k)
```