Snake Mackerel — An Isogeny Based AKEM

Jonas Janneck!, Jonas Meers!, Massimo Ostuzzil, Doreen Riepel?
b b b p

Ruhr University Bochum
2CISPA Saarbriicken

Swiss Isogeny Day 2025

AKEM

Authenticated Key
Encapsulation Mechanism

1/12

(ska, pky) <& Gen

Q} (skp,pkg) & Gen
AT
oy

Bob

1/12

pkp

(ska, pky) <& Gen

Q} (skp,pkg) & Gen

1/12

pk 4 pk

(ska, pky) <& Gen

B
Q} (skp,pkg) & Gen
A& // ‘ \\“

B\ P

(ct, k) <& Enc(ska, pkg) Alice Bob

1/12

pk 4 pk

(ska, pky) <& Gen

B

Q} (skp,pkg) & Gen
) A

[8 P ct ;"/ ‘ \

LW P

(ct, k) <& Enc(ska, pkg) Alice Bob

1/12

pkp

(ska, pky) <& Gen

q; (skp,pkg) & Gen

V| N\
N

ct / ‘ A

4P

Bob k< Dec(skp, pky,ct)

(ct, k) <& Enc(ska, pkg)

1/12

pkp

(ska, pky) <& Gen

q; (skp,pkg) & Gen

V| N\
N

ct / ‘ A

L\\\‘J

Bob k< Dec(skp, pky,ct)

(ct, k) <& Enc(ska, pkg)

» Confidentiality: Only Alice and Bob know k&

1/12

pkp o

o
q; (skp,pkg) & Gen

V| N\
N

ct / ‘ A

4P

Bob k< Dec(skp, pky,ct)

(ska, pky) <& Gen

(ct, k) <& Enc(ska, pkg)

» Confidentiality: Only Alice and Bob know k&
» Authenticity: Bob knows that Alice sent ct

1/12

R0

Judie
(ska, pky) <& Gen Q} (skp,pkp) < Gen
p bN AT
[LA ct 4 \
(ct, k) <& Enc(ska, pkg) Alice Bob k< Dec(skp, pky,ct)

» Confidentiality: Only Alice and Bob know k&
» Authenticity: Bob knows that Alice sent ct

» Deniability: Judie cannot be convinced that Alice sent ct

1/12

Generic Constructions

» KEM + (Ring) Signature (FrodoKEX+ [CHNT24a], Gandalf-AKEM [GJK24])

2/12

Generic Constructions

» KEM + (Ring) Signature (FrodoKEX+ [CHNT24a], Gandalf-AKEM [GJK24])
» Double NIKE (DH, CSIDH) [AJKL23]

2/12

Generic Constructions

» KEM + (Ring) Signature (FrodoKEX+ [CHNT24a], Gandalf-AKEM [GJK24])
» Double NIKE (DH, CSIDH) [AJKL23]
» This Work: Split Ciphertext KEM + Identification Scheme (DH-AKEM [ABF12], SnakeM)

2/12

Generic Constructions

» KEM + (Ring) Signature (FrodoKEX+ [CHNT24a], Gandalf-AKEM [GJK24])

» Double NIKE (DH, CSIDH) [AJKL23]

» This Work: Split Ciphertext KEM + Identification Scheme (DH-AKEM [ABF12], SnakeM)
I Split Ciphertext KEM # Split KEM

2/12

Generic Constructions

» KEM + (Ring) Signature (FrodoKEX+ [CHNT24a], Gandalf-AKEM [GJK24])

» Double NIKE (DH, CSIDH) [AJKL23]

» This Work: Split Ciphertext KEM + Identification Scheme (DH-AKEM [ABF12], SnakeM)
I Split Ciphertext KEM # Split KEM

Split Ciphertext KEM

Given ID-Scheme ID, a Split Ciphertext KEM KEM requires

(ct, k) & KEM.Enc(pk), ct = (cto,ct1), cto € Im(ID.Com).

2/12

Generic Constructions

» KEM + (Ring) Signature (FrodoKEX+ [CHNT24a], Gandalf-AKEM [GJK24])

» Double NIKE (DH, CSIDH) [AJKL23]

» This Work: Split Ciphertext KEM + Identification Scheme (DH-AKEM [ABF12], SnakeM)
I Split Ciphertext KEM # Split KEM

Split Ciphertext KEM

Given ID-Scheme ID, a Split Ciphertext KEM KEM requires

(ct, k) & KEM.Enc(pk), ct = (cto,ct1), cto € Im(ID.Com).

= Reusing the commitment leads to a more compact scheme than plain KEM + Signature

2/12

Generic Constructions

» KEM + (Ring) Signature (FrodoKEX+ [CHNT24a], Gandalf-AKEM [GJK24])

» Double NIKE (DH, CSIDH) [AJKL23]

» This Work: Split Ciphertext KEM + Identification Scheme (DH-AKEM [ABF12], SnakeM)
I Split Ciphertext KEM # Split KEM

Split Ciphertext KEM
Given ID-Scheme ID, a Split Ciphertext KEM KEM requires

(ct, k) & KEM.Enc(pk), ct = (cto,ct1), cto € Im(ID.Com).
= Reusing the commitment leads to a more compact scheme than plain KEM + Signature

= Our generic construction SnakeM can be instantiated from isogenies

2/12

Generic Constructions

» KEM + (Ring) Signature (FrodoKEX+ [CHNT24a], Gandalf-AKEM [GJK24])

» Double NIKE (DH, CSIDH) [AJKL23]

» This Work: Split Ciphertext KEM + Identification Scheme (DH-AKEM [ABF12], SnakeM)
I Split Ciphertext KEM # Split KEM

Split Ciphertext KEM
Given ID-Scheme ID, a Split Ciphertext KEM KEM requires

(ct, k) & KEM.Enc(pk), ct = (cto,ct1), cto € Im(ID.Com).
= Reusing the commitment leads to a more compact scheme than plain KEM + Signature
= Our generic construction SnakeM can be instantiated from isogenies
= SnakeM is only 5x larger than DH-AKEM (64 vs. 296 Bytes) — naive approach 370 Bytes

2/12

Snake Mackerel = POKE + SQIsignHD

- --» non-rational

— secret

3/12

Snake Mackerel = POKE + SQIsignHD

- --» non-rational

— secret

3/12

Snake Mackerel = POKE + SQIsignHD

- --» non-rational

— secret

3/12

Snake Mackerel = POKE + SQIsignHD

Esig
[]

o

BS)
a
o
3

@ < @

Ecom

- --» non-rational

— secret

3/12

Snake Mackerel = POKE + SQIsignHD

Ecom

--->

Esig
[]

H(Ecom,m)

®
Echal

non-rational

secret

3/12

Snake Mackerel = POKE + SQIsignHD

EO ESig
[] []
U:(%S"rsp(U)yﬁﬂrsp(V)) v
@ ---------mmmmmmm - > @
Ecom Echal

- --» non-rational

— secret

3/12

Snake Mackerel = POKE + SQIsignHD

Xo € Eoy[D]
E() EO Esig
[] [] []

U:(%S"rsp(U)yﬁﬂrsp(V)) v
@ —---—- - -—- - — - - -— == > @
Ecom Echal

- --» non-rational

— secret

3/12

Snake Mackerel = POKE + SQIsignHD

X1 = [a]pskenc(Xo) Xo € Eo[D)
Eenc PskEnc Ey Ep Esig
@ 4 - - - ° ° °

U:(%S"rsp(U)yﬁﬂrsp(V)) v
@ —---—- - -—- - — - - -— == > @
Ecom Echal

- --» non-rational

— secret

3/12

Snake Mackerel = POKE + SQIsignHD

X1 = [a]pskenc(Xo) Xo € Eo[D)
Eenc Eoy FEo Esig
. ° ° °
@’ ©
: : ° UZ(Q?WTSP(U)ysﬂrsp(V)) - :
Eet 12 Ecom Echal
Xz = [B]¢’(X1) X2 = [B]p(Xo)

- --» non-rational

— secret

3/12

Snake Mackerel = POKE + SQIsignHD

X1 = [a]pskenc(Xo) Xo € Eo[D)
Eenc EO EO Esig
. ° ° °
. e PEc = @esU)em(V)
B B Beom Ehal
Xz = [B]¢’(X1) X2 = [B]p(Xo)

= [o]pygnc (X2)
skEnc ---» non-rational

— secret

3/12

Snake Mackerel = POKE + SQIsignHD

X1 = [a]pskenc(Xo) Xo € Eo[D)
Eenc EO EO Esig
[J [} [] [J
o= (QMOTSP(U)MPrsp(V)) \
° ° @ -J------ - >0
Bex Es Eeom [
X3 = [Ble’(X1) Xz = [Ble(Xo)

= [o]pygnc (X2)
skEnc ---» non-rational

— secret

3/12

Snake Mackerel = POKE + SQIsignHD

X1 = [a]pskenc(Xo) Xo € Eo[D)
Eenc PskEnc Eop PskSig Esig
@ - - L -)
‘rgéom Pcom H(Ecom, Xg, cntxt)
: - ’QékEnc ‘. = (¢, ¢rsp(U), prsp(V)) . :
Bt Ecom FEchal
X3 = [Ble’(X1) Xz = [Ble(Xo)
= [G]L’D;kEnc(X2)

- --» non-rational

— secret

3/12

Compatibility

SQIsignHD and POKE use primes p = ¢2%3% — 1, but with different sizes
POKE: 30 ~ 222 SQIsignHD: 3% ~ 2*

4/12

Compatibility

SQIsignHD and POKE use primes p = ¢2%3% — 1, but with different sizes
POKE: 30 ~ 222 SQIsignHD: 3% ~ 2*

Use B-SIDH approach for a more compact scheme with p € O(22*)

(p+1)(p-1)=2"ND, 2°€0(2"), N=][[tecoeE®, D=apaeco@)

4/12

Compatibility

SQIsignHD and POKE use primes p = ¢2%3% — 1, but with different sizes
POKE: 30 ~ 222 SQIsignHD: 3% ~ 2*

Use B-SIDH approach for a more compact scheme with p € O(22*)

(p+1)(p-1)=2"ND, 2°€0(2), N=[[tecoeE®, D=apaco@)
——

HD representation

A / A shared key
rational isogenies

4/12

Compatibility

SQIsignHD and POKE use primes p = ¢2%3% — 1, but with different sizes
POKE: 30 ~ 222 SQIsignHD: 3% ~ 2*

Use B-SIDH approach for a more compact scheme with p € O(22*)

(p+1)(p-1)=2"ND, 2°€0(2), N=[[tecoeE®, D=apaco@)
——

HD representation

A / A shared key
rational isogenies

» Commitment isogeny is now rational

» N € O(p) to ensure good distribution of the commitment curve

4/12

Compatibility

SQIsignHD and POKE use primes p = ¢2%3% — 1, but with different sizes
POKE: 30 ~ 222 SQIsignHD: 3% ~ 2*

Use B-SIDH approach for a more compact scheme with p € O(22*)

(p+1)(p-1)=2"ND, 2°€0(2), N=[[tecoeE®, D=apaco@)
——

HD representation

A / A shared key
rational isogenies

» Commitment isogeny is now rational
» N € O(p) to ensure good distribution of the commitment curve

» D smooth enough to allow for point compression

4/12

Compatibility

SQIsignHD and POKE use primes p = ¢2%3% — 1, but with different sizes
POKE: 30 ~ 222 SQIsignHD: 3% ~ 2*

Use B-SIDH approach for a more compact scheme with p € O(22*)

(p+1)(p-1)=2"ND, 2°€0(2), N=[[tecoeE®, D=apaco@)
——

HD representation

A / A shared key
rational isogenies

» Commitment isogeny is now rational
» N € O(p) to ensure good distribution of the commitment curve

» D smooth enough to allow for point compression

p=2183.36.72.174.472.3112 . 3672 - 4392 - 10492 - 1373 — 1
log p = 247, max{¢;} = 1373, max{log ¢;} = 39

4/12

Security

The Best out of Both Worlds?

Confidentiality: Ins-CCA, simplified

e

Challenger Adversary

5/12

Confidentiality: Ins-CCA, simplified

(sk*, pk*) & Gen

e

Challenger Adversary

5/12

Confidentiality: Ins-CCA, simplified

(sk*, pk*) & Gen

l pk*

v

Challenger Adversary

5/12

Confidentiality: Ins-CCA, simplified

(sk*, pk*) & Gen pk*

e

Challenger Adversary

5/12

Confidentiality: Ins-CCA, simplified

(sk*, pk*) & Gen pk*

Send me a ciphertext!

Challenger Adversary

5/12

Confidentiality: Ins-CCA, simplified

(sk*, pk*) & Gen pk*

e

Challenger Adversary

5/12

Confidentiality: Ins-CCA, simplified

(sk*, pk*) & Gen pk*

(ct, k) <& Encaps(sk*, pk) ”

Challenger Adversary

pk
(ct, k)

i
<

v

5/12

Confidentiality: Ins-CCA, simplified

(sk*, pk*) & Gen pk*

I sent you something.

@ Decapsulate and send the result!

Challenger Adversary

5/12

Confidentiality: Ins-CCA, simplified

(sk*, pk*) & Gen pk*

e

” } -

Challenger Adversary

5/12

Confidentiality: Ins-CCA, simplified

(sk*, pk*) & Gen pk*

k «— Decaps(pk,sk*,ct)” } pk, ct
k

Challenger Adversary

v

5/12

Confidentiality: Ins-CCA, simplified

(sk*, pk*) & Gen

Challenger Adversary

5/12

Confidentiality: Ins-CCA, simplified

(sk*, pk*) & Gen pk*

I will send an honest message

@ on your behalf to myself

Challenger Adversary

5/12

Confidentiality: Ins-CCA, simplified

(sk*, pk*) & Gen pk*

e

sk

A~

Challenger Adversary

5/12

Confidentiality: Ins-CCA, simplified

(sk*, pk*) & Gen pk*
64 (0,1} & o
(ct, k) <& Encaps(sk, pk*)

ke$ Challenger Adversary

5/12

Confidentiality: Ins-CCA, simplified

(sk*, pk*) & Gen pk*
64 (0,1} & o
(ct, k) <& Encaps(sk, pk*) (ct, k) .

ke$ Challenger Adversary

5/12

Confidentiality: Ins-CCA, simplified

(sk*, pk*) & Gen pk*
64 (0,1} & o
(ct, k) <& Encaps(sk, pk*) (ct, k) .
if B=1 ” b !
ke$ Adversary

Challenger
win if b = b’

5/12

Confidentiality: Ins-CCA, simplified

(sk*, pk*) & Gen pk*
64 (0,1} & o
(ct, k) <& Encaps(sk, pk*) (ct, k) .
if B=1 ” b !
ke$ Challenger Adversary

win if b = b’

Note
sk is used for the signature and should not help to decapsulate the KEM part of ct

5/12

Confidentiality of SnakeM

For any Ins-CCA adversary A against SnakeM, there exist an adversary B against OW-KCA of POKE such
that

AdVET S (A) < AdVOTKEA(B) + 6.

6/12

Confidentiality of SnakeM

For any Ins-CCA adversary A against SnakeM, there exist an adversary B against OW-KCA of POKE such
that

AdVET S (A) < AdVOTKEA(B) + 6.

» OW-KCA: Compute the shared key given access to an key-checking oracle

O*(ct, k) — 1 if ct contains key k

6/12

Confidentiality of SnakeM

For any Ins-CCA adversary A against SnakeM, there exist an adversary B against OW-KCA of POKE such
that

AdVET S (A) < AdVOTKEA(B) + 6.

» OW-KCA: Compute the shared key given access to an key-checking oracle
O*(ct, k) — 1 if ct contains key k

Why OW-KCA when POKE is IND-CCA secure?

6/12

Confidentiality of SnakeM

For any Ins-CCA adversary A against SnakeM, there exist an adversary B against OW-KCA of POKE such
that

AdVEESEAL(A) < AdVOWKEA(B) + 6.

» OW-KCA: Compute the shared key given access to an key-checking oracle
O*(ct, k) — 1 if ct contains key k

Why OW-KCA when POKE is IND-CCA secure? We cannot use Fujisaki-Okamoto Transform :(

6/12

Confidentiality of SnakeM

Theorem

For any Ins-CCA adversary A against SnakeM, there exist an adversary B against OW-KCA of POKE such
that

_CC OW-KC
AdV!SnIs]akeﬁ/[(A) < Advpvc\;I?EA(B) 4 @
» OW-KCA: Compute the shared key given access to an key-checking oracle

O*(ct, k) — 1 if ct contains key k

Why OW-KCA when POKE is IND-CCA secure? We cannot use Fujisaki-Okamoto Transform :(

Fujisaki-Okamoto Transform [FO99, HHK17]

T-Transform U-Transform

IND-CPA’ ———— OW-KCA —— = |IND-CCA

6/12

Confidentiality of SnakeM

Theorem

For any Ins-CCA adversary A against SnakeM, there exist an adversary B against OW-KCA of POKE such
that

_CC OW-KC
AdV!SnIs]akeﬁ/[(A) < Advpvc\;I?EA(B) 4 @
» OW-KCA: Compute the shared key given access to an key-checking oracle

O*(ct, k) — 1 if ct contains key k

Why OW-KCA when POKE is IND-CCA secure? We cannot use Fujisaki-Okamoto Transform :(

Fujisaki-Okamoto Transform [FO99, HHK17]

T-Transform U-Transform

IND-CPA’ ———— OW-KCA —— = |IND-CCA

» T-Transform makes the encryption randomness explicit = leaks commitment

6/12

Confidentiality of SnakeM

FEenc
[J

Eet

o =1(q,prsp(U), orsp(V))

Y

Ecom

[]
Echal

6/12

Confidentiality of SnakeM

Theorem

For any Ins-CCA adversary A against SnakeM, there exist an adversary B against OW-KCA of POKE such
that

_CC OW-KC
AdV!SnIs]akeﬁ/[(A) < Advpvc\;I?EA(B) 4 @
» OW-KCA: Compute the shared key given access to an key-checking oracle

O*(ct, k) — 1 if ct contains key k

Why OW-KCA when POKE is IND-CCA secure? We cannot use Fujisaki-Okamoto Transform :(

Fujisaki-Okamoto Transform [FO99, HHK17]

T-Transform U-Transform

IND-CPA’ ———— OW-KCA —— = |IND-CCA

» T-Transform makes the encryption randomness explicit = leaks commitment

» We include checks to avoid adaptive attacks like [GPST16, MOXZ24]

6/12

Authenticity: Ins-Auth, simplified

=
a9

Challenger Adversary

7/12

Authenticity: Ins-Auth, simplified

(sk*, pk*) & Gen

Challenger Adversary

7/12

Authenticity: Ins-Auth, simplified

(sk*, pk*) & Gen
'| | pk*

Challenger Adversary

v

7/12

Authenticity: Ins-Auth, simplified

(sk*, pk*) & Gen pk*

Challenger Adversary

7/12

Authenticity: Ins-Auth, simplified

(sk*, pk*) < Gen pk*

Challenger Adversary

7/12

Authenticity: Ins-Auth, simplified

(sk*, pk*) & Gen pk*
» } pk

Challenger Adversary

7/12

Authenticity: Ins-Auth, simplified

(sk*, pk*) & Gen
(ct, k) <& Encaps(sk*, pk) »

Challenger

pk

pk*

i
<

(ct, k)

v

Adversary

7/12

Authenticity: Ins-Auth, simplified

(sk*, pk*) < Gen pk*

I sent you something.

@ Decapsulate and send the result!

Challenger Adversary

7/12

Authenticity: Ins-Auth, simplified

(sk*, pk*) < Gen pk*
») pk, ct

Challenger Adversary

7/12

Authenticity: Ins-Auth, simplified

(sk*, pk*) & Gen pk*
k < Decaps(pk, sk*, ct) ») pk, ct
k

Challenger Adversary

v

7/12

Authenticity: Ins-Auth, simplified

(sk*, pk*) & Gen

Challenger Adversary

7/12

Authenticity: Ins-Auth, simplified

* *\ 3 k*
(sk™, pk™) ¢ Gen Try to send a fresh P
@ ciphertext on my behalf!
Challenger Adversary

7/12

Authenticity: Ins-Auth, simplified

(sk*, pk*) < Gen pk*
») sk, ct

Challenger Adversary

7/12

Authenticity: Ins-Auth, simplified

(sk*, pk*) & Gen pk*
if ct not fresh: @

abort sk, ct
k <& Decaps(pk*, sk, ct) » ’

win if k£ # L Challenger Adversary

7/12

Authenticity: Ins-Auth, simplified

(sk*, pk*) < Gen pk*

if ct not fresh: @

abort sk, ct

k <& Decaps(pk*, sk, ct)

win if k£ # L Challenger Adversary

Note

An honest Decaps checks the signature against pk* and returns L if the signature is invalid

7/12

Non-Malleability: Return of the Lollipop

Observation

For Ins-Auth the signature needs to be non-malleable

ct = (CtKEM1 0’) = Ct/ = (CtKEM, O’I)

8/12

Non-Malleability: Return of the Lollipop

Observation

For Ins-Auth the signature needs to be non-malleable

ct = (CtKEM1 0’) = Ct/ = (CtKEM, O’I)

In SQIsignHD, the signature is interpolation data o = (¢, U’, V')

Ecom Prsp Echal
) > @
(U, V) € Eeom[27] (U, V') € Ecnal[2°%]

8/12

Non-Malleability: Return of the Lollipop

Observation

For Ins-Auth the signature needs to be non-malleable

ct = (CtKEM1 0’) = Ct/ = (CtKEM, O’I)

In SQIsignHD, the signature is interpolation data o = (¢, U’, V')

Ecom chal
o i Q [n]
(U, V) € Ecom[2%] ([n) U7, [n]V

8/12

Non-Malleability: Return of the Lollipop

Observation

For Ins-Auth the signature needs to be non-malleable

ct = (CtKEM1 0’) = Ct/ = (CtKEM, O’I)

In SQIsignHD, the signature is interpolation data o = (¢, U’, V')

Ecom chal
o i Q [n]
(U, V) € Ecom[2%] ([n) U7, [n]V

» If n2¢ < 2%, then o/ = (n2¢q,[n]U’,[n] V') is a valid signature too

8/12

Non-Malleability: Return of the Lollipop

Observation

For Ins-Auth the signature needs to be non-malleable

ct = (CtKEM1 0’) = Ct/ = (CtKEM, O’I)

In SQIsignHD, the signature is interpolation data o = (¢, U’, V')

Ecom chal
o i Q [n]
(U, V) € Ecom[2%] ([n) U7, [n]V

» If n2¢ < 2%, then o/ = (n2¢q,[n]U’,[n] V') is a valid signature too

» Checking square-freeness of ¢ is not enough as ¢rsp may contain a cyclic £™-isogeny

8/12

Non-Malleability: Return of the Lollipop

Observation

For Ins-Auth the signature needs to be non-malleable

ct = (CtKEM1 0’) = Ct/ = (CtKEM, O’I)

In SQIsignHD, the signature is interpolation data o = (¢, U’, V')

Ecom chal
o i Q [n]
(U, V) € Ecom[2%] ([n) U7, [n]V

» If n2¢ < 2%, then o/ = (n2¢q,[n]U’,[n] V') is a valid signature too

» Checking square-freeness of ¢ is not enough as ¢rsp may contain a cyclic £™-isogeny

= Non-Malleable version of SQIsignHD?

8/12

Non-Malleable SQIsignHD

It would be desirable to check cyclicity of HD-represented isogenies

9/12

Non-Malleable SQIsignHD

It would be desirable to check cyclicity of HD-represented isogenies

So far, a generic cyclicity check seems out of reach

9/12

Non-Malleable SQIsignHD

It would be desirable to check cyclicity of HD-represented isogenies

So far, a generic cyclicity check seems out of reach We don’t need a generic cyclicity check!

9/12

Non-Malleable SQIsignHD

It would be desirable to check cyclicity of HD-represented isogenies

So far, a generic cyclicity check seems out of reach We don’t need a generic cyclicity check!
Idea:

» During signing: require minimum length ¢ > 2%/logp

Ecom) Echal
rsp

Available torsion

9/12

Non-Malleable SQIsignHD

It would be desirable to check cyclicity of HD-represented isogenies

So far, a generic cyclicity check seems out of reach We don’t need a generic cyclicity check!
Idea:

» During signing: require minimum length ¢ > 2%/logp

Ecom @rsp Echal

degy < logp

9/12

Non-Malleable SQIsignHD

It would be desirable to check cyclicity of HD-represented isogenies

So far, a generic cyclicity check seems out of reach We don’t need a generic cyclicity check!
Idea:

» During signing: require minimum length ¢ > 2%/logp

» During verification: evaluate ¢rsp on Ecom|[n] for all prime n < v/log p and see if it vanishes

Ecom ©rsp Echal

degy < logp

9/12

Non-Malleable SQIsignHD

It would be desirable to check cyclicity of HD-represented isogenies

So far, a generic cyclicity check seems out of reach We don’t need a generic cyclicity check!
Idea:

» During signing: require minimum length ¢ > 2%/logp
» During verification: evaluate ¢rsp on Ecom|[n] for all prime n < v/log p and see if it vanishes

» cannot append small scalar multiplication

Ecom Prsp Echal

degy < logp

9/12

Non-Malleable SQIsignHD

It would be desirable to check cyclicity of HD-represented isogenies

So far, a generic cyclicity check seems out of reach We don’t need a generic cyclicity check!
Idea:

» During signing: require minimum length ¢ > 2%/logp
» During verification: evaluate ¢rsp on Ecom|[n] for all prime n < v/log p and see if it vanishes
» cannot append small scalar multiplication

» Large(r) scalar multiplication already exceeds the available 2*-torsion

Ecom Prsp Echal

degy < logp

9/12

Non-Malleable SQIsignHD

It would be desirable to check cyclicity of HD-represented isogenies

So far, a generic cyclicity check seems out of reach We don’t need a generic cyclicity check!
Idea:

» During signing: require minimum length ¢ > 2%/logp
» During verification: evaluate ¢rsp on Ecom[n] for all prime n < v/logp and see if it vanishes
» cannot append small scalar multiplication
» Large(r) scalar multiplication already exceeds the available 2*-torsion
» Experiments suggest: rejection probability 1/1000
Ecom Echal

Prsp
[) >0 - - - - - - >e

degy < logp

9/12

Non-Malleable SQIsignHD

It would be desirable to check cyclicity of HD-represented isogenies

So far, a generic cyclicity check seems out of reach We don’t need a generic cyclicity check!
Idea:

» During signing: require minimum length ¢ > 2%/logp

» During verification: evaluate ¢rsp on Ecom[n] for all prime n < v/logp and see if it vanishes
» cannot append small scalar multiplication

» Large(r) scalar multiplication already exceeds the available 2*-torsion

» Experiments suggest: rejection probability 1/1000

Non-Malleability of SQIsignHD

For any NM adversary A against a slight modification of SQIsignHD, there exist adversaries B against
OneEnd and C against Cyclic RUGDIO indistinguishability (CR-IND) such that

AdVNM(A) < AdeneEnd(B) + GTrans * AdVCR—IND(C).

9/12

Authenticity of SnakeM

For any Ins-Aut adversary A against SnakeM, there exist an adversary B against SS-Enc and an adversary
C against NM-Enc such that

Ins-Aut SS-Enc NM-Enc
AdvghakeMm (A) < +AdVPOKE,SQIsignHD (B) + AdVPOKE,SQIsignHD () +54.

10/ 12

Authenticity of SnakeM

For any Ins-Aut adversary A against SnakeM, there exist an adversary B against SS-Enc and an adversary
C against NM-Enc such that
Ins-Aut SS-Enc NM-Enc
AdvghakeMm (A) < +AdVPOKE,SQIsignHD (B) + AdVPOKE,SQIsignHD () +54.

» NM: Given pkjp and transcripts 7 = {(com;, chal;, rsp;)}, compute (com’,chal’,rsp’) ¢ T

10/ 12

Authenticity of SnakeM

For any Ins-Aut adversary A against SnakeM, there exist an adversary B against SS-Enc and an adversary
C against NM-Enc such that
Ins-Aut SS-Enc NM-Enc
AdvghakeMm (A) < +AdVPOKE,SQIsignHD (B) + AdVPOKE,SQIsignHD () +54.

» NM: Given pkjp and transcripts 7 = {(com;, chal;, rsp;)}, compute (com’,chal’,rsp’) ¢ T
» NM-Enc: Additional Enc oracle that provides a consistent “POKE part” of the SnakeM ciphertext:

10/ 12

Authenticity of SnakeM

For any Ins-Aut adversary A against SnakeM, there exist an adversary B against SS-Enc and an adversary
C against NM-Enc such that

Ins-Aut SS-Enc NM-Enc
AdvghakeMm (A) < +AdVPOKE,SQIsignHD (B) + AdVPOKE,SQIsignHD () +54.

» NM: Given pkjp and transcripts 7 = {(com;, chal;, rsp;)}, compute (com’,chal’,rsp’) ¢ T
» NM-Enc: Additional Enc oracle that provides a consistent “POKE part” of the SnakeM ciphertext:

Eo Esig
. .

Pehal

= (¢, prsp(U), prsp(V)) .
Ecom Eehal

10/ 12

Authenticity of SnakeM

For any Ins-Aut adversary A against SnakeM, there exist an adversary B against SS-Enc and an adversary
C against NM-Enc such that

Ins-Aut SS-Enc NM-Enc
AdvghakeMm (A) < +AdVPOKE,SQIsignHD (B) + AdVPOKE,SQIsignHD () +54.

» NM: Given pkjp and transcripts 7 = {(com;, chal;, rsp;)}, compute (com’,chal’,rsp’) ¢ T
» NM-Enc: Additional Enc oracle that provides a consistent “POKE part” of the SnakeM ciphertext:

(P2, Q2) € Eenc (Po, Qo) € Eo Esig
. .)

Pehal

= (¢, prsp(U), prsp(V))
. . .
(P3, Q3) € Ect (P2, Q2) € Ecom Echal

10/ 12

Authenticity of SnakeM

For any Ins-Aut adversary A against SnakeM, there exist an adversary B against SS-Enc and an adversary
C against NM-Enc such that

Ins-Aut SS-Enc NM-Enc
AdvghakeMm (A) < +AdVPOKE,SQIsignHD (B) + AdVPOKE,SQIsignHD () +54.

» NM: Given pkjp and transcripts 7 = {(com;, chal;, rsp;)}, compute (com’,chal’,rsp’) ¢ T
» NM-Enc: Additional Enc oracle that provides a consistent “POKE part” of the SnakeM ciphertext:

(P2, Q2) € Eenc (Po, Qo) € Eo Esig
* < .)

Adversary can decrypt :(Pehal

= (¢, prsp(U), prsp(V))
* <« . .
(P3, Q3) € Ect (P2, Q2) € Ecom Echal

10/ 12

Compactness — Is It Worth It?

Scheme (variant) Confidentiality Authenticity ‘ Deniability ‘ PQ } p ‘ ok ‘

Group-based

DH-AKEM [ABH¥21] [Ins-CCA | Out-Aut | DR* [x] 32 | 32
Zheng [Zhe97, BSZ02] | Ins-CCA | Ins-Aut | HR* | x| 64 | 64
Lattice-based

ETSTH-AKEM (BAT + ANTRAG) [AJKL23] Ins-CCA Out-Aut — v 1119 1417
NIKE-AKEM (SwoosH) [AJKL23] Ins-CCA Out-Aut DR* /| >221184 | > 221184
EANTH-AKEM (BAT + SwoosH) Ins-CCA Out-Aut DR* v 473 | > 221705
FrRODOKEX+ [CHN*24b] IND-1BatchCCA | UNF-1KCA DR v 72 21 300
DeEN. AKEM (BAT + GANDALF) [GJK24] Ins-CCA Out-Aut HR & DR v 1749 1417
Isogeny-based

ETSTH-AKEM (POKE + SQISIGNHD) [AJKL23] | Ins-CCA Out-Aut — v 493 432
NIKE-AKEM (CSIDH) [AJKL23] Ins-CCA Out-Aut DR" v 2567 2567
EANTH-AKEM (POKE + CSIDH) Ins-CCA Out-Aut DR* v 384 624
DEN. AKEM (POKE + EREBOR) [GJK24] Ins-CCA Out-Aut HR & DR v 740 432
SnakeM Ins-CCA Ins-Aut HR v 296 368

11/12

Open Questions

Cryptanalysis

» OW-KCA of POKE + Countermeasures
» Additional Enc oracle in SS and NM

Other Constructions
» Though there are already some ideas...
Better Security Proof

» Reduce NM-Enc and SS-Enc to (more) standard assumptions

» Maybe in an Algebraic Isogeny Model

12/12

Questions?

I¥" meers.org
= research@meers.org

References I

[ABF12] Afonso Arriaga, Manuel Barbosa, and Pooya Farshim. On the joint security of signature and
encryption schemes under randomness reuse: Efficiency and security amplification. pages
206-223, 2012.

[ABH*21] Joél Alwen, Bruno Blanchet, Eduard Hauck, Eike Kiltz, Benjamin Lipp, and Doreen Riepel.
Analysing the HPKE standard. pages 87-116, 2021.

[AJKL23] Joél Alwen, Jonas Janneck, Eike Kiltz, and Benjamin Lipp. The pre-shared key modes of
HPKE. pages 329-360, 2023.
[BSZ02] Joonsang Baek, Ron Steinfeld, and Yuliang Zheng. Formal proofs for the security of
signcryption. pages 80-98, 2002.
[CHN*24a] Daniel Collins, Lois Huguenin-Dumittan, Ngoc Khanh Nguyen, Nicolas Rolin, and Serge
Vaudenay. K-waay: Fast and deniable post-quantum X3DH without ring signatures. 2024.
[CHN*24b] Daniel Collins, Lois Huguenin-Dumittan, Ngoc Khanh Nguyen, Nicolas Rolin, and Serge

Vaudenay. K-waay: Fast and deniable post-quantum X3DH without ring signatures.
Cryptology ePrint Archive, Report 2024/120, 2024.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. pages 537-554, 1999.

12/12

References I1

[GIK24]

[GPST16]

[HHK17]

[MOXZ24]

[Zhe97]

Phillip Gajland, Jonas Janneck, and Eike Kiltz. Ring signatures for deniable AKEM:
Gandalf’s fellowship. pages 305-338, 2024.

Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On the security of
supersingular isogeny cryptosystems. pages 63-91, 2016.

Dennis Hofheinz, Kathrin Hévelmanns, and Eike Kiltz. A modular analysis of the
Fujisaki-Okamoto transformation. pages 341-371, 2017.

Tomoki Moriya, Hiroshi Onuki, Maozhi Xu, and Guoqing Zhou. Adaptive attacks against
FESTA without input validation or constant-time implementation. pages 3—-19, 2024.

Yuliang Zheng. Digital signcryption or how to achieve cost(signature & encryption) <
cost(signature) + cost(encryption). pages 165-179, 1997.

12/12

SnakeM in Detail

00
01

SnakeM.Gen

(skkem, Pkyem) <& KEM.Gen
(skip, pkip) < 1D.Gen

s <& {0,1}"

sk (Sngm, Sk|D, S)

pk = (pkyewm: Pkip)

return (sk, pk)

SnakeM.Encaps(sksnp, Pkgey)

06
07
08
09
10
11
1
13
14
15
16
17

N

parse sksnp = (-, skip,)

parse pkrey = (Pkken:)

pkip < derive(skip)

pkenp < derive(sksnp)

(com, R) < ID.Com \\ com = cto
(ct1, K) <~ KEM.Encaps, (pkeem, R)
(chl, pad) < G(pkjp, com, pkgey, ct1, K)
rsp <% ID.Rsp(skip, com, chl, R)

Ctrsp <— rsp @ pad

ct < (com, cty, Ctrsp)

k < H(K, com, ct1, rsp, pksnp, PKrev)
return (ct, k)

SnakeM.Decaps(pksyp, Skrev, ct)

18
19
20
21
22
23
24
25
26
27
28
29
30

parse pkeyp = (- Pkip)

parse skrcy = (skkem, +, S)

parse ct = (com, cty, Ctrsp)

pkgey < derive(skrev)

K + KEM.Decaps(skkem, com, cty)

if K =1 \\ Decaps may fail
K <+s

(chl, pad) + G(pkjp, com, pkgey, ct1, K)

rsp <— Ctrsp B pad

if 1D.Ver(pk,p, com,chl,rsp) = 1:
k <= H(K, com, cty, rsp, pksnp, Pkrey)
return k

return |

12/12

	References

