
Snake Mackerel – An Isogeny Based AKEM

Jonas Janneck1, Jonas Meers1, Massimo Ostuzzi1, Doreen Riepel2

1Ruhr University Bochum
2CISPA Saarbrücken

Swiss Isogeny Day 2025



AKEM
Authenticated Key

Encapsulation Mechanism



Definition

Alice Bob

Judie

(skA, pkA) $← Gen (skB , pkB ) $← Gen

pkA pkB

ct

(ct, k) $← Enc(skA, pkB ) k ← Dec(skB , pkA, ct)

✗

▶ Confidentiality: Only Alice and Bob know k

▶ Authenticity: Bob knows that Alice sent ct

▶ Deniability: Judie cannot be convinced that Alice sent ct

1 / 12



Definition

Alice Bob

Judie

(skA, pkA) $← Gen (skB , pkB ) $← Gen

pkA pkB

ct

(ct, k) $← Enc(skA, pkB ) k ← Dec(skB , pkA, ct)

✗

▶ Confidentiality: Only Alice and Bob know k

▶ Authenticity: Bob knows that Alice sent ct

▶ Deniability: Judie cannot be convinced that Alice sent ct

1 / 12



Definition

Alice Bob

Judie

(skA, pkA) $← Gen (skB , pkB ) $← Gen

pkA pkB

ct

(ct, k) $← Enc(skA, pkB ) k ← Dec(skB , pkA, ct)

✗

▶ Confidentiality: Only Alice and Bob know k

▶ Authenticity: Bob knows that Alice sent ct

▶ Deniability: Judie cannot be convinced that Alice sent ct

1 / 12



Definition

Alice Bob

Judie

(skA, pkA) $← Gen (skB , pkB ) $← Gen

pkA pkB

ct

(ct, k) $← Enc(skA, pkB ) k ← Dec(skB , pkA, ct)

✗

▶ Confidentiality: Only Alice and Bob know k

▶ Authenticity: Bob knows that Alice sent ct

▶ Deniability: Judie cannot be convinced that Alice sent ct

1 / 12



Definition

Alice Bob

Judie

(skA, pkA) $← Gen (skB , pkB ) $← Gen

pkA pkB

ct

(ct, k) $← Enc(skA, pkB ) k ← Dec(skB , pkA, ct)

✗

▶ Confidentiality: Only Alice and Bob know k

▶ Authenticity: Bob knows that Alice sent ct

▶ Deniability: Judie cannot be convinced that Alice sent ct

1 / 12



Definition

Alice Bob

Judie

(skA, pkA) $← Gen (skB , pkB ) $← Gen

pkA pkB

ct

(ct, k) $← Enc(skA, pkB ) k ← Dec(skB , pkA, ct)

✗

▶ Confidentiality: Only Alice and Bob know k

▶ Authenticity: Bob knows that Alice sent ct

▶ Deniability: Judie cannot be convinced that Alice sent ct

1 / 12



Definition

Alice Bob

Judie

(skA, pkA) $← Gen (skB , pkB ) $← Gen

pkA pkB

ct

(ct, k) $← Enc(skA, pkB ) k ← Dec(skB , pkA, ct)

✗

▶ Confidentiality: Only Alice and Bob know k

▶ Authenticity: Bob knows that Alice sent ct

▶ Deniability: Judie cannot be convinced that Alice sent ct

1 / 12



Definition

Alice Bob

Judie

(skA, pkA) $← Gen (skB , pkB ) $← Gen

pkA pkB

ct

(ct, k) $← Enc(skA, pkB ) k ← Dec(skB , pkA, ct)

✗

▶ Confidentiality: Only Alice and Bob know k

▶ Authenticity: Bob knows that Alice sent ct

▶ Deniability: Judie cannot be convinced that Alice sent ct

1 / 12



Definition

Alice Bob

Judie

(skA, pkA) $← Gen (skB , pkB ) $← Gen

pkA pkB

ct

(ct, k) $← Enc(skA, pkB ) k ← Dec(skB , pkA, ct)

✗

▶ Confidentiality: Only Alice and Bob know k

▶ Authenticity: Bob knows that Alice sent ct

▶ Deniability: Judie cannot be convinced that Alice sent ct

1 / 12



Generic Constructions

▶ KEM + (Ring) Signature (FrodoKEX+ [CHN+24a], Gandalf-AKEM [GJK24])

▶ Double NIKE (DH, CSIDH) [AJKL23]

▶ This Work: Split Ciphertext KEM + Identification Scheme (DH-AKEM [ABF12], SnakeM)

Split Ciphertext KEM ̸= Split KEM

Split Ciphertext KEM

Given ID-Scheme ID, a Split Ciphertext KEM KEM requires

(ct, k) $← KEM.Enc(pk), ct = (ct0, ct1), ct0 ∈ Im(ID.Com).

⇒ Reusing the commitment leads to a more compact scheme than plain KEM + Signature

⇒ Our generic construction SnakeM can be instantiated from isogenies

⇒ SnakeM is only 5× larger than DH-AKEM (64 vs. 296 Bytes) – naive approach 370 Bytes

2 / 12



Generic Constructions

▶ KEM + (Ring) Signature (FrodoKEX+ [CHN+24a], Gandalf-AKEM [GJK24])

▶ Double NIKE (DH, CSIDH) [AJKL23]

▶ This Work: Split Ciphertext KEM + Identification Scheme (DH-AKEM [ABF12], SnakeM)

Split Ciphertext KEM ̸= Split KEM

Split Ciphertext KEM

Given ID-Scheme ID, a Split Ciphertext KEM KEM requires

(ct, k) $← KEM.Enc(pk), ct = (ct0, ct1), ct0 ∈ Im(ID.Com).

⇒ Reusing the commitment leads to a more compact scheme than plain KEM + Signature

⇒ Our generic construction SnakeM can be instantiated from isogenies

⇒ SnakeM is only 5× larger than DH-AKEM (64 vs. 296 Bytes) – naive approach 370 Bytes

2 / 12



Generic Constructions

▶ KEM + (Ring) Signature (FrodoKEX+ [CHN+24a], Gandalf-AKEM [GJK24])

▶ Double NIKE (DH, CSIDH) [AJKL23]

▶ This Work: Split Ciphertext KEM + Identification Scheme (DH-AKEM [ABF12], SnakeM)

Split Ciphertext KEM ̸= Split KEM

Split Ciphertext KEM

Given ID-Scheme ID, a Split Ciphertext KEM KEM requires

(ct, k) $← KEM.Enc(pk), ct = (ct0, ct1), ct0 ∈ Im(ID.Com).

⇒ Reusing the commitment leads to a more compact scheme than plain KEM + Signature

⇒ Our generic construction SnakeM can be instantiated from isogenies

⇒ SnakeM is only 5× larger than DH-AKEM (64 vs. 296 Bytes) – naive approach 370 Bytes

2 / 12



Generic Constructions

▶ KEM + (Ring) Signature (FrodoKEX+ [CHN+24a], Gandalf-AKEM [GJK24])

▶ Double NIKE (DH, CSIDH) [AJKL23]

▶ This Work: Split Ciphertext KEM + Identification Scheme (DH-AKEM [ABF12], SnakeM)

Split Ciphertext KEM ̸= Split KEM

Split Ciphertext KEM

Given ID-Scheme ID, a Split Ciphertext KEM KEM requires

(ct, k) $← KEM.Enc(pk), ct = (ct0, ct1), ct0 ∈ Im(ID.Com).

⇒ Reusing the commitment leads to a more compact scheme than plain KEM + Signature

⇒ Our generic construction SnakeM can be instantiated from isogenies

⇒ SnakeM is only 5× larger than DH-AKEM (64 vs. 296 Bytes) – naive approach 370 Bytes

2 / 12



Generic Constructions

▶ KEM + (Ring) Signature (FrodoKEX+ [CHN+24a], Gandalf-AKEM [GJK24])

▶ Double NIKE (DH, CSIDH) [AJKL23]

▶ This Work: Split Ciphertext KEM + Identification Scheme (DH-AKEM [ABF12], SnakeM)

Split Ciphertext KEM ̸= Split KEM

Split Ciphertext KEM

Given ID-Scheme ID, a Split Ciphertext KEM KEM requires

(ct, k) $← KEM.Enc(pk), ct = (ct0, ct1), ct0 ∈ Im(ID.Com).

⇒ Reusing the commitment leads to a more compact scheme than plain KEM + Signature

⇒ Our generic construction SnakeM can be instantiated from isogenies

⇒ SnakeM is only 5× larger than DH-AKEM (64 vs. 296 Bytes) – naive approach 370 Bytes

2 / 12



Generic Constructions

▶ KEM + (Ring) Signature (FrodoKEX+ [CHN+24a], Gandalf-AKEM [GJK24])

▶ Double NIKE (DH, CSIDH) [AJKL23]

▶ This Work: Split Ciphertext KEM + Identification Scheme (DH-AKEM [ABF12], SnakeM)

Split Ciphertext KEM ̸= Split KEM

Split Ciphertext KEM

Given ID-Scheme ID, a Split Ciphertext KEM KEM requires

(ct, k) $← KEM.Enc(pk), ct = (ct0, ct1), ct0 ∈ Im(ID.Com).

⇒ Reusing the commitment leads to a more compact scheme than plain KEM + Signature

⇒ Our generic construction SnakeM can be instantiated from isogenies

⇒ SnakeM is only 5× larger than DH-AKEM (64 vs. 296 Bytes) – naive approach 370 Bytes

2 / 12



Generic Constructions

▶ KEM + (Ring) Signature (FrodoKEX+ [CHN+24a], Gandalf-AKEM [GJK24])

▶ Double NIKE (DH, CSIDH) [AJKL23]

▶ This Work: Split Ciphertext KEM + Identification Scheme (DH-AKEM [ABF12], SnakeM)

Split Ciphertext KEM ̸= Split KEM

Split Ciphertext KEM

Given ID-Scheme ID, a Split Ciphertext KEM KEM requires

(ct, k) $← KEM.Enc(pk), ct = (ct0, ct1), ct0 ∈ Im(ID.Com).

⇒ Reusing the commitment leads to a more compact scheme than plain KEM + Signature

⇒ Our generic construction SnakeM can be instantiated from isogenies

⇒ SnakeM is only 5× larger than DH-AKEM (64 vs. 296 Bytes) – naive approach 370 Bytes

2 / 12



Generic Constructions

▶ KEM + (Ring) Signature (FrodoKEX+ [CHN+24a], Gandalf-AKEM [GJK24])

▶ Double NIKE (DH, CSIDH) [AJKL23]

▶ This Work: Split Ciphertext KEM + Identification Scheme (DH-AKEM [ABF12], SnakeM)

Split Ciphertext KEM ̸= Split KEM

Split Ciphertext KEM

Given ID-Scheme ID, a Split Ciphertext KEM KEM requires

(ct, k) $← KEM.Enc(pk), ct = (ct0, ct1), ct0 ∈ Im(ID.Com).

⇒ Reusing the commitment leads to a more compact scheme than plain KEM + Signature

⇒ Our generic construction SnakeM can be instantiated from isogenies

⇒ SnakeM is only 5× larger than DH-AKEM (64 vs. 296 Bytes) – naive approach 370 Bytes

2 / 12



Snake Mackerel = POKÉ + SQIsignHD

E0

non-rational

secret

Esig

Ecom Echal

σ = (q, φrsp(U ), φrsp(V ))

X0 ∈ E0[D ]

E0Eenc

X1 = [α]φskEnc(X0)

E3

X2 = [β]φ(X0)X3 = [β]φ′(X1)

= [α]φ′
skEnc(X2)

Ect

E0

Ecom

φcom

σ = (q, φrsp(U ), φrsp(V ))φ′
skEnc

φskSigφskEnc

φ′
com

X2 = [β]φ(X0)

3 / 12



Snake Mackerel = POKÉ + SQIsignHD

E0

non-rational

secret

Esig

Ecom Echal

σ = (q, φrsp(U ), φrsp(V ))

X0 ∈ E0[D ]

E0Eenc

X1 = [α]φskEnc(X0)

E3

X2 = [β]φ(X0)X3 = [β]φ′(X1)

= [α]φ′
skEnc(X2)

Ect

E0

Ecom

φcom

σ = (q, φrsp(U ), φrsp(V ))φ′
skEnc

φskSigφskEnc

φ′
com

X2 = [β]φ(X0)

3 / 12



Snake Mackerel = POKÉ + SQIsignHD

E0

non-rational

secret

EsigφskSig

Ecom

φskSig

Echal

σ = (q, φrsp(U ), φrsp(V ))

X0 ∈ E0[D ]

E0Eenc

X1 = [α]φskEnc(X0)

E3

X2 = [β]φ(X0)X3 = [β]φ′(X1)

= [α]φ′
skEnc(X2)

Ect

E0

Ecom

φcom

σ = (q, φrsp(U ), φrsp(V ))φ′
skEnc

φskSigφskEnc

φ′
com

X2 = [β]φ(X0)

3 / 12



Snake Mackerel = POKÉ + SQIsignHD

E0

non-rational

secret

Esig

Ecom

φcom

φskSig

Echal

σ = (q, φrsp(U ), φrsp(V ))

X0 ∈ E0[D ]

E0Eenc

X1 = [α]φskEnc(X0)

E3

X2 = [β]φ(X0)X3 = [β]φ′(X1)

= [α]φ′
skEnc(X2)

Ect

E0

Ecom

φcom

σ = (q, φrsp(U ), φrsp(V ))φ′
skEnc

φskSigφskEnc

φ′
com

X2 = [β]φ(X0)

3 / 12



Snake Mackerel = POKÉ + SQIsignHD

E0

non-rational

secret

Esig

Ecom

φskSig

H (Ecom,m)

Echal

φcom

σ = (q, φrsp(U ), φrsp(V ))

X0 ∈ E0[D ]

E0Eenc

X1 = [α]φskEnc(X0)

E3

X2 = [β]φ(X0)X3 = [β]φ′(X1)

= [α]φ′
skEnc(X2)

Ect

E0

Ecom

φcom

σ = (q, φrsp(U ), φrsp(V ))φ′
skEnc

φskSigφskEnc

φ′
com

X2 = [β]φ(X0)

3 / 12



Snake Mackerel = POKÉ + SQIsignHD

E0

non-rational

secret

Esig

Ecom

φskSig

Echal

φcom

σ = (q, φrsp(U ), φrsp(V ))

X0 ∈ E0[D ]

E0Eenc

X1 = [α]φskEnc(X0)

E3

X2 = [β]φ(X0)X3 = [β]φ′(X1)

= [α]φ′
skEnc(X2)

Ect

E0

Ecom

φcom

σ = (q, φrsp(U ), φrsp(V ))φ′
skEnc

φskSigφskEnc

φ′
com

X2 = [β]φ(X0)

3 / 12



Snake Mackerel = POKÉ + SQIsignHD

E0

non-rational

secret

Esig

Ecom

φskSig

Echal

φcom

σ = (q, φrsp(U ), φrsp(V ))

X0 ∈ E0[D ]

E0

Eenc

X1 = [α]φskEnc(X0)

E3

X2 = [β]φ(X0)X3 = [β]φ′(X1)

= [α]φ′
skEnc(X2)

Ect

E0

Ecom

φcom

σ = (q, φrsp(U ), φrsp(V ))φ′
skEnc

φskSigφskEnc

φ′
com

X2 = [β]φ(X0)

3 / 12



Snake Mackerel = POKÉ + SQIsignHD

E0

non-rational

secret

Esig

Ecom

φskSig

Echal

φcom

σ = (q, φrsp(U ), φrsp(V ))

X0 ∈ E0[D ]

E0Eenc φskEnc

X1 = [α]φskEnc(X0)

E3

X2 = [β]φ(X0)X3 = [β]φ′(X1)

= [α]φ′
skEnc(X2)

Ect

E0

Ecom

φcom

σ = (q, φrsp(U ), φrsp(V ))φ′
skEnc

φskSigφskEnc

φ′
com

X2 = [β]φ(X0)

3 / 12



Snake Mackerel = POKÉ + SQIsignHD

E0

non-rational

secret

Esig

Ecom

φskSig

Echal

φcom

σ = (q, φrsp(U ), φrsp(V ))

X0 ∈ E0[D ]

E0Eenc

X1 = [α]φskEnc(X0)

φskEnc

E3

X2 = [β]φ(X0)X3 = [β]φ′(X1)

= [α]φ′
skEnc(X2)

φφ′

Ect

E0

Ecom

φcom

σ = (q, φrsp(U ), φrsp(V ))φ′
skEnc

φskSigφskEnc

φ′
com

X2 = [β]φ(X0)

3 / 12



Snake Mackerel = POKÉ + SQIsignHD

E0

non-rational

secret

Esig

Ecom

φskSig

Echal

φcom

σ = (q, φrsp(U ), φrsp(V ))

X0 ∈ E0[D ]

E0Eenc

X1 = [α]φskEnc(X0)

φskEnc

E3

X2 = [β]φ(X0)X3 = [β]φ′(X1)

= [α]φ′
skEnc(X2)

φφ′

Ect

φ′
skEnc

E0

Ecom

φcom

σ = (q, φrsp(U ), φrsp(V ))φ′
skEnc

φskSigφskEnc

φ′
com

X2 = [β]φ(X0)

3 / 12



Snake Mackerel = POKÉ + SQIsignHD

E0

non-rational

secret

Esig

Ecom

φskSig

Echal

φcom

σ = (q, φrsp(U ), φrsp(V ))

X0 ∈ E0[D ]

E0Eenc

X1 = [α]φskEnc(X0)

φskEnc

E3

X2 = [β]φ(X0)X3 = [β]φ′(X1)

= [α]φ′
skEnc(X2)

φφ′

Ect

φ′
skEnc

E0

Ecom

φcom

σ = (q, φrsp(U ), φrsp(V ))φ′
skEnc

φskSigφskEnc

φ′
com

X2 = [β]φ(X0)

3 / 12



Snake Mackerel = POKÉ + SQIsignHD

E0

non-rational

secret

Esig

Ecom

H (Ecom,X3, cntxt)

Echal

σ = (q, φrsp(U ), φrsp(V ))

X0 ∈ E0[D ]

E0

Eenc

X1 = [α]φskEnc(X0)

E3

X2 = [β]φ(X0)

X3 = [β]φ′(X1)

= [α]φ′
skEnc(X2)

Ect

E0

Ecom

φcom

σ = (q, φrsp(U ), φrsp(V ))φ′
skEnc

φskSigφskEnc

φ′
com

X2 = [β]φ(X0)

3 / 12



Compatibility

SQIsignHD and POKÉ use primes p = c2a3b − 1, but with different sizes

POKÉ: 3b ≈ 22λ SQIsignHD: 3b ≈ 2λ

Use B-SIDH approach for a more compact scheme with p ∈ O(22λ)

(p + 1)(p − 1) = 2aND , 2a ∈ O(2λ)︸ ︷︷ ︸

HD representation

, N =
∏

ℓi ∈ O(22λ)︸ ︷︷ ︸

rational isogenies

, D = q1q2q3 ∈ O(2λ)︸ ︷︷ ︸

shared key

▶ Commitment isogeny is now rational

▶ N ∈ O(p) to ensure good distribution of the commitment curve

▶ D smooth enough to allow for point compression

p = 2133 · 36 · 72 · 174 · 472 · 3112 · 3672 · 4392 · 10492 · 1373− 1
log p = 247, max{ℓi} = 1373, max{log qi} = 39

4 / 12



Compatibility

SQIsignHD and POKÉ use primes p = c2a3b − 1, but with different sizes

POKÉ: 3b ≈ 22λ SQIsignHD: 3b ≈ 2λ

Use B-SIDH approach for a more compact scheme with p ∈ O(22λ)

(p + 1)(p − 1) = 2aND , 2a ∈ O(2λ)︸ ︷︷ ︸

HD representation

, N =
∏

ℓi ∈ O(22λ)︸ ︷︷ ︸

rational isogenies

, D = q1q2q3 ∈ O(2λ)︸ ︷︷ ︸

shared key

▶ Commitment isogeny is now rational

▶ N ∈ O(p) to ensure good distribution of the commitment curve

▶ D smooth enough to allow for point compression

p = 2133 · 36 · 72 · 174 · 472 · 3112 · 3672 · 4392 · 10492 · 1373− 1
log p = 247, max{ℓi} = 1373, max{log qi} = 39

4 / 12



Compatibility

SQIsignHD and POKÉ use primes p = c2a3b − 1, but with different sizes

POKÉ: 3b ≈ 22λ SQIsignHD: 3b ≈ 2λ

Use B-SIDH approach for a more compact scheme with p ∈ O(22λ)

(p + 1)(p − 1) = 2aND , 2a ∈ O(2λ)︸ ︷︷ ︸
HD representation

, N =
∏

ℓi ∈ O(22λ)︸ ︷︷ ︸
rational isogenies

, D = q1q2q3 ∈ O(2λ)︸ ︷︷ ︸
shared key

▶ Commitment isogeny is now rational

▶ N ∈ O(p) to ensure good distribution of the commitment curve

▶ D smooth enough to allow for point compression

p = 2133 · 36 · 72 · 174 · 472 · 3112 · 3672 · 4392 · 10492 · 1373− 1
log p = 247, max{ℓi} = 1373, max{log qi} = 39

4 / 12



Compatibility

SQIsignHD and POKÉ use primes p = c2a3b − 1, but with different sizes

POKÉ: 3b ≈ 22λ SQIsignHD: 3b ≈ 2λ

Use B-SIDH approach for a more compact scheme with p ∈ O(22λ)

(p + 1)(p − 1) = 2aND , 2a ∈ O(2λ)︸ ︷︷ ︸
HD representation

, N =
∏

ℓi ∈ O(22λ)︸ ︷︷ ︸
rational isogenies

, D = q1q2q3 ∈ O(2λ)︸ ︷︷ ︸
shared key

▶ Commitment isogeny is now rational
▶ N ∈ O(p) to ensure good distribution of the commitment curve

▶ D smooth enough to allow for point compression

p = 2133 · 36 · 72 · 174 · 472 · 3112 · 3672 · 4392 · 10492 · 1373− 1
log p = 247, max{ℓi} = 1373, max{log qi} = 39

4 / 12



Compatibility

SQIsignHD and POKÉ use primes p = c2a3b − 1, but with different sizes

POKÉ: 3b ≈ 22λ SQIsignHD: 3b ≈ 2λ

Use B-SIDH approach for a more compact scheme with p ∈ O(22λ)

(p + 1)(p − 1) = 2aND , 2a ∈ O(2λ)︸ ︷︷ ︸
HD representation

, N =
∏

ℓi ∈ O(22λ)︸ ︷︷ ︸
rational isogenies

, D = q1q2q3 ∈ O(2λ)︸ ︷︷ ︸
shared key

▶ Commitment isogeny is now rational
▶ N ∈ O(p) to ensure good distribution of the commitment curve

▶ D smooth enough to allow for point compression

p = 2133 · 36 · 72 · 174 · 472 · 3112 · 3672 · 4392 · 10492 · 1373− 1
log p = 247, max{ℓi} = 1373, max{log qi} = 39

4 / 12



Compatibility

SQIsignHD and POKÉ use primes p = c2a3b − 1, but with different sizes

POKÉ: 3b ≈ 22λ SQIsignHD: 3b ≈ 2λ

Use B-SIDH approach for a more compact scheme with p ∈ O(22λ)

(p + 1)(p − 1) = 2aND , 2a ∈ O(2λ)︸ ︷︷ ︸
HD representation

, N =
∏

ℓi ∈ O(22λ)︸ ︷︷ ︸
rational isogenies

, D = q1q2q3 ∈ O(2λ)︸ ︷︷ ︸
shared key

▶ Commitment isogeny is now rational
▶ N ∈ O(p) to ensure good distribution of the commitment curve

▶ D smooth enough to allow for point compression

p = 2133 · 36 · 72 · 174 · 472 · 3112 · 3672 · 4392 · 10492 · 1373− 1
log p = 247, max{ℓi} = 1373, max{log qi} = 39

4 / 12



Security
The Best out of Both Worlds?



Confidentiality: Ins-CCA, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!I will send an honest message
on your behalf to myself

skβ $← {0, 1}

(ct, k) $← Encaps(sk, pk⋆)

if β = 1

k ← $

win if b = b′

(ct, k)

b′

Note

sk is used for the signature and should not help to decapsulate the KEM part of ct

5 / 12



Confidentiality: Ins-CCA, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!I will send an honest message
on your behalf to myself

skβ $← {0, 1}

(ct, k) $← Encaps(sk, pk⋆)

if β = 1

k ← $

win if b = b′

(ct, k)

b′

Note

sk is used for the signature and should not help to decapsulate the KEM part of ct

5 / 12



Confidentiality: Ins-CCA, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!I will send an honest message
on your behalf to myself

skβ $← {0, 1}

(ct, k) $← Encaps(sk, pk⋆)

if β = 1

k ← $

win if b = b′

(ct, k)

b′

Note

sk is used for the signature and should not help to decapsulate the KEM part of ct

5 / 12



Confidentiality: Ins-CCA, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!I will send an honest message
on your behalf to myself

skβ $← {0, 1}

(ct, k) $← Encaps(sk, pk⋆)

if β = 1

k ← $

win if b = b′

(ct, k)

b′

Note

sk is used for the signature and should not help to decapsulate the KEM part of ct

5 / 12



Confidentiality: Ins-CCA, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!I will send an honest message
on your behalf to myself

skβ $← {0, 1}

(ct, k) $← Encaps(sk, pk⋆)

if β = 1

k ← $

win if b = b′

(ct, k)

b′

Note

sk is used for the signature and should not help to decapsulate the KEM part of ct

5 / 12



Confidentiality: Ins-CCA, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!I will send an honest message
on your behalf to myself

skβ $← {0, 1}

(ct, k) $← Encaps(sk, pk⋆)

if β = 1

k ← $

win if b = b′

(ct, k)

b′

Note

sk is used for the signature and should not help to decapsulate the KEM part of ct

5 / 12



Confidentiality: Ins-CCA, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!I will send an honest message
on your behalf to myself

skβ $← {0, 1}

(ct, k) $← Encaps(sk, pk⋆)

if β = 1

k ← $

win if b = b′

(ct, k)

b′

Note

sk is used for the signature and should not help to decapsulate the KEM part of ct

5 / 12



Confidentiality: Ins-CCA, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!I will send an honest message
on your behalf to myself

skβ $← {0, 1}

(ct, k) $← Encaps(sk, pk⋆)

if β = 1

k ← $

win if b = b′

(ct, k)

b′

Note

sk is used for the signature and should not help to decapsulate the KEM part of ct

5 / 12



Confidentiality: Ins-CCA, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!I will send an honest message
on your behalf to myself

skβ $← {0, 1}

(ct, k) $← Encaps(sk, pk⋆)

if β = 1

k ← $

win if b = b′

(ct, k)

b′

Note

sk is used for the signature and should not help to decapsulate the KEM part of ct

5 / 12



Confidentiality: Ins-CCA, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!I will send an honest message
on your behalf to myself

skβ $← {0, 1}

(ct, k) $← Encaps(sk, pk⋆)

if β = 1

k ← $

win if b = b′

(ct, k)

b′

Note

sk is used for the signature and should not help to decapsulate the KEM part of ct

5 / 12



Confidentiality: Ins-CCA, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!I will send an honest message
on your behalf to myself

skβ $← {0, 1}

(ct, k) $← Encaps(sk, pk⋆)

if β = 1

k ← $

win if b = b′

(ct, k)

b′

Note

sk is used for the signature and should not help to decapsulate the KEM part of ct

5 / 12



Confidentiality: Ins-CCA, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!I will send an honest message
on your behalf to myself

skβ $← {0, 1}

(ct, k) $← Encaps(sk, pk⋆)

if β = 1

k ← $

win if b = b′

(ct, k)

b′

Note

sk is used for the signature and should not help to decapsulate the KEM part of ct

5 / 12



Confidentiality: Ins-CCA, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!I will send an honest message
on your behalf to myself

skβ $← {0, 1}

(ct, k) $← Encaps(sk, pk⋆)

if β = 1

k ← $

win if b = b′

(ct, k)

b′

Note

sk is used for the signature and should not help to decapsulate the KEM part of ct

5 / 12



Confidentiality: Ins-CCA, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!I will send an honest message
on your behalf to myself

skβ $← {0, 1}

(ct, k) $← Encaps(sk, pk⋆)

if β = 1

k ← $

win if b = b′

(ct, k)

b′

Note

sk is used for the signature and should not help to decapsulate the KEM part of ct

5 / 12



Confidentiality: Ins-CCA, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!I will send an honest message
on your behalf to myself

skβ $← {0, 1}

(ct, k) $← Encaps(sk, pk⋆)

if β = 1

k ← $

win if b = b′

(ct, k)

b′

Note

sk is used for the signature and should not help to decapsulate the KEM part of ct

5 / 12



Confidentiality: Ins-CCA, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!I will send an honest message
on your behalf to myself

skβ $← {0, 1}

(ct, k) $← Encaps(sk, pk⋆)

if β = 1

k ← $

win if b = b′

(ct, k)

b′

Note

sk is used for the signature and should not help to decapsulate the KEM part of ct

5 / 12



Confidentiality: Ins-CCA, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!I will send an honest message
on your behalf to myself

skβ $← {0, 1}

(ct, k) $← Encaps(sk, pk⋆)

if β = 1

k ← $

win if b = b′

(ct, k)

b′

Note

sk is used for the signature and should not help to decapsulate the KEM part of ct

5 / 12



Confidentiality of SnakeM

Theorem

For any Ins-CCA adversary A against SnakeM, there exist an adversary B against OW-KCA of POKÉ such
that

AdvIns-CCA
SnakeM(A) ≤ AdvOW-KCA

POKÉ (B) + δ.

▶ OW-KCA: Compute the shared key given access to an key-checking oracle

Okc(ct, k)→ 1 if ct contains key k

Why OW-KCA when POKÉ is IND-CCA secure? We cannot use Fujisaki-Okamoto Transform :(

Fujisaki-Okamoto Transform [FO99, HHK17]

IND-CPA T-Transform=========⇒ OW-KCA U-Transform=========⇒ IND-CCA

▶ T-Transform makes the encryption randomness explicit =⇒ leaks commitment

▶ We include checks to avoid adaptive attacks like [GPST16, MOXZ24]

6 / 12



Confidentiality of SnakeM

Theorem

For any Ins-CCA adversary A against SnakeM, there exist an adversary B against OW-KCA of POKÉ such
that

AdvIns-CCA
SnakeM(A) ≤ AdvOW-KCA

POKÉ (B) + δ.

▶ OW-KCA: Compute the shared key given access to an key-checking oracle

Okc(ct, k)→ 1 if ct contains key k

Why OW-KCA when POKÉ is IND-CCA secure? We cannot use Fujisaki-Okamoto Transform :(

Fujisaki-Okamoto Transform [FO99, HHK17]

IND-CPA T-Transform=========⇒ OW-KCA U-Transform=========⇒ IND-CCA

▶ T-Transform makes the encryption randomness explicit =⇒ leaks commitment

▶ We include checks to avoid adaptive attacks like [GPST16, MOXZ24]

6 / 12



Confidentiality of SnakeM

Theorem

For any Ins-CCA adversary A against SnakeM, there exist an adversary B against OW-KCA of POKÉ such
that

AdvIns-CCA
SnakeM(A) ≤ AdvOW-KCA

POKÉ (B) + δ.

▶ OW-KCA: Compute the shared key given access to an key-checking oracle

Okc(ct, k)→ 1 if ct contains key k

Why OW-KCA when POKÉ is IND-CCA secure?

We cannot use Fujisaki-Okamoto Transform :(

Fujisaki-Okamoto Transform [FO99, HHK17]

IND-CPA T-Transform=========⇒ OW-KCA U-Transform=========⇒ IND-CCA

▶ T-Transform makes the encryption randomness explicit =⇒ leaks commitment

▶ We include checks to avoid adaptive attacks like [GPST16, MOXZ24]

6 / 12



Confidentiality of SnakeM

Theorem

For any Ins-CCA adversary A against SnakeM, there exist an adversary B against OW-KCA of POKÉ such
that

AdvIns-CCA
SnakeM(A) ≤ AdvOW-KCA

POKÉ (B) + δ.

▶ OW-KCA: Compute the shared key given access to an key-checking oracle

Okc(ct, k)→ 1 if ct contains key k

Why OW-KCA when POKÉ is IND-CCA secure? We cannot use Fujisaki-Okamoto Transform :(

Fujisaki-Okamoto Transform [FO99, HHK17]

IND-CPA T-Transform=========⇒ OW-KCA U-Transform=========⇒ IND-CCA

▶ T-Transform makes the encryption randomness explicit =⇒ leaks commitment

▶ We include checks to avoid adaptive attacks like [GPST16, MOXZ24]

6 / 12



Confidentiality of SnakeM

Theorem

For any Ins-CCA adversary A against SnakeM, there exist an adversary B against OW-KCA of POKÉ such
that

AdvIns-CCA
SnakeM(A) ≤ AdvOW-KCA

POKÉ (B) + δ.

▶ OW-KCA: Compute the shared key given access to an key-checking oracle

Okc(ct, k)→ 1 if ct contains key k

Why OW-KCA when POKÉ is IND-CCA secure? We cannot use Fujisaki-Okamoto Transform :(

Fujisaki-Okamoto Transform [FO99, HHK17]

IND-CPA T-Transform=========⇒ OW-KCA U-Transform=========⇒ IND-CCA

▶ T-Transform makes the encryption randomness explicit =⇒ leaks commitment

▶ We include checks to avoid adaptive attacks like [GPST16, MOXZ24]

6 / 12



Confidentiality of SnakeM

Theorem

For any Ins-CCA adversary A against SnakeM, there exist an adversary B against OW-KCA of POKÉ such
that

AdvIns-CCA
SnakeM(A) ≤ AdvOW-KCA

POKÉ (B) + δ.

▶ OW-KCA: Compute the shared key given access to an key-checking oracle

Okc(ct, k)→ 1 if ct contains key k

Why OW-KCA when POKÉ is IND-CCA secure? We cannot use Fujisaki-Okamoto Transform :(

Fujisaki-Okamoto Transform [FO99, HHK17]

IND-CPA T-Transform=========⇒ OW-KCA U-Transform=========⇒ IND-CCA

▶ T-Transform makes the encryption randomness explicit =⇒ leaks commitment

▶ We include checks to avoid adaptive attacks like [GPST16, MOXZ24]

6 / 12



Confidentiality of SnakeM

E0 Esig

Ecom

φskSig

Echal

φcom

σ = (q, φrsp(U ), φrsp(V ))

E0Eenc φskEnc

E3

φφ′

Ect

φ′
skEnc

6 / 12



Confidentiality of SnakeM

Theorem

For any Ins-CCA adversary A against SnakeM, there exist an adversary B against OW-KCA of POKÉ such
that

AdvIns-CCA
SnakeM(A) ≤ AdvOW-KCA

POKÉ (B) + δ.

▶ OW-KCA: Compute the shared key given access to an key-checking oracle

Okc(ct, k)→ 1 if ct contains key k

Why OW-KCA when POKÉ is IND-CCA secure? We cannot use Fujisaki-Okamoto Transform :(

Fujisaki-Okamoto Transform [FO99, HHK17]

IND-CPA T-Transform=========⇒ OW-KCA U-Transform=========⇒ IND-CCA

▶ T-Transform makes the encryption randomness explicit =⇒ leaks commitment

▶ We include checks to avoid adaptive attacks like [GPST16, MOXZ24]

6 / 12



Authenticity: Ins-Auth, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!Try to send a fresh
ciphertext on my behalf!

sk, ct

if ct not fresh:

abort

k $← Decaps(pk⋆, sk, ct)

win if k ̸= ⊥

Note

An honest Decaps checks the signature against pk⋆ and returns ⊥ if the signature is invalid

7 / 12



Authenticity: Ins-Auth, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!Try to send a fresh
ciphertext on my behalf!

sk, ct

if ct not fresh:

abort

k $← Decaps(pk⋆, sk, ct)

win if k ̸= ⊥

Note

An honest Decaps checks the signature against pk⋆ and returns ⊥ if the signature is invalid

7 / 12



Authenticity: Ins-Auth, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!Try to send a fresh
ciphertext on my behalf!

sk, ct

if ct not fresh:

abort

k $← Decaps(pk⋆, sk, ct)

win if k ̸= ⊥

Note

An honest Decaps checks the signature against pk⋆ and returns ⊥ if the signature is invalid

7 / 12



Authenticity: Ins-Auth, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!Try to send a fresh
ciphertext on my behalf!

sk, ct

if ct not fresh:

abort

k $← Decaps(pk⋆, sk, ct)

win if k ̸= ⊥

Note

An honest Decaps checks the signature against pk⋆ and returns ⊥ if the signature is invalid

7 / 12



Authenticity: Ins-Auth, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!Try to send a fresh
ciphertext on my behalf!

sk, ct

if ct not fresh:

abort

k $← Decaps(pk⋆, sk, ct)

win if k ̸= ⊥

Note

An honest Decaps checks the signature against pk⋆ and returns ⊥ if the signature is invalid

7 / 12



Authenticity: Ins-Auth, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!Try to send a fresh
ciphertext on my behalf!

sk, ct

if ct not fresh:

abort

k $← Decaps(pk⋆, sk, ct)

win if k ̸= ⊥

Note

An honest Decaps checks the signature against pk⋆ and returns ⊥ if the signature is invalid

7 / 12



Authenticity: Ins-Auth, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!Try to send a fresh
ciphertext on my behalf!

sk, ct

if ct not fresh:

abort

k $← Decaps(pk⋆, sk, ct)

win if k ̸= ⊥

Note

An honest Decaps checks the signature against pk⋆ and returns ⊥ if the signature is invalid

7 / 12



Authenticity: Ins-Auth, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!Try to send a fresh
ciphertext on my behalf!

sk, ct

if ct not fresh:

abort

k $← Decaps(pk⋆, sk, ct)

win if k ̸= ⊥

Note

An honest Decaps checks the signature against pk⋆ and returns ⊥ if the signature is invalid

7 / 12



Authenticity: Ins-Auth, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!Try to send a fresh
ciphertext on my behalf!

sk, ct

if ct not fresh:

abort

k $← Decaps(pk⋆, sk, ct)

win if k ̸= ⊥

Note

An honest Decaps checks the signature against pk⋆ and returns ⊥ if the signature is invalid

7 / 12



Authenticity: Ins-Auth, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!Try to send a fresh
ciphertext on my behalf!

sk, ct

if ct not fresh:

abort

k $← Decaps(pk⋆, sk, ct)

win if k ̸= ⊥

Note

An honest Decaps checks the signature against pk⋆ and returns ⊥ if the signature is invalid

7 / 12



Authenticity: Ins-Auth, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!Try to send a fresh
ciphertext on my behalf!

sk, ct

if ct not fresh:

abort

k $← Decaps(pk⋆, sk, ct)

win if k ̸= ⊥

Note

An honest Decaps checks the signature against pk⋆ and returns ⊥ if the signature is invalid

7 / 12



Authenticity: Ins-Auth, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!Try to send a fresh
ciphertext on my behalf!

sk, ct

if ct not fresh:

abort

k $← Decaps(pk⋆, sk, ct)

win if k ̸= ⊥

Note

An honest Decaps checks the signature against pk⋆ and returns ⊥ if the signature is invalid

7 / 12



Authenticity: Ins-Auth, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!Try to send a fresh
ciphertext on my behalf!

sk, ct

if ct not fresh:

abort

k $← Decaps(pk⋆, sk, ct)

win if k ̸= ⊥

Note

An honest Decaps checks the signature against pk⋆ and returns ⊥ if the signature is invalid

7 / 12



Authenticity: Ins-Auth, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!Try to send a fresh
ciphertext on my behalf!

sk, ct

if ct not fresh:

abort

k $← Decaps(pk⋆, sk, ct)

win if k ̸= ⊥

Note

An honest Decaps checks the signature against pk⋆ and returns ⊥ if the signature is invalid

7 / 12



Authenticity: Ins-Auth, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!Try to send a fresh
ciphertext on my behalf!

sk, ct

if ct not fresh:

abort

k $← Decaps(pk⋆, sk, ct)

win if k ̸= ⊥

Note

An honest Decaps checks the signature against pk⋆ and returns ⊥ if the signature is invalid

7 / 12



Non-Malleability: Return of the Lollipop

Observation

For Ins-Auth the signature needs to be non-malleable

ct = (ctKEM, σ) =⇒ ct′ = (ctKEM, σ
′)

In SQIsignHD, the signature is interpolation data σ = (q,U ′,V ′)

Ecom

(U ,V ) ∈ Ecom[2a ] (U ′,V ′) ∈ Echal[2a ]([n]U ′, [n]V ′)

EchalEchalφrsp
[n]

▶ If n2q ≤ 2a , then σ′ = (n2q, [n]U ′, [n]V ′) is a valid signature too

▶ Checking square-freeness of q is not enough as φrsp may contain a cyclic ℓm -isogeny

⇒ Non-Malleable version of SQIsignHD?

8 / 12



Non-Malleability: Return of the Lollipop

Observation

For Ins-Auth the signature needs to be non-malleable

ct = (ctKEM, σ) =⇒ ct′ = (ctKEM, σ
′)

In SQIsignHD, the signature is interpolation data σ = (q,U ′,V ′)

Ecom

(U ,V ) ∈ Ecom[2a ] (U ′,V ′) ∈ Echal[2a ]([n]U ′, [n]V ′)

EchalEchalφrsp
[n]

▶ If n2q ≤ 2a , then σ′ = (n2q, [n]U ′, [n]V ′) is a valid signature too

▶ Checking square-freeness of q is not enough as φrsp may contain a cyclic ℓm -isogeny

⇒ Non-Malleable version of SQIsignHD?

8 / 12



Non-Malleability: Return of the Lollipop

Observation

For Ins-Auth the signature needs to be non-malleable

ct = (ctKEM, σ) =⇒ ct′ = (ctKEM, σ
′)

In SQIsignHD, the signature is interpolation data σ = (q,U ′,V ′)

Ecom

(U ,V ) ∈ Ecom[2a ] (U ′,V ′) ∈ Echal[2a ]([n]U ′, [n]V ′)

EchalEchalφrsp
[n]

▶ If n2q ≤ 2a , then σ′ = (n2q, [n]U ′, [n]V ′) is a valid signature too

▶ Checking square-freeness of q is not enough as φrsp may contain a cyclic ℓm -isogeny

⇒ Non-Malleable version of SQIsignHD?

8 / 12



Non-Malleability: Return of the Lollipop

Observation

For Ins-Auth the signature needs to be non-malleable

ct = (ctKEM, σ) =⇒ ct′ = (ctKEM, σ
′)

In SQIsignHD, the signature is interpolation data σ = (q,U ′,V ′)

Ecom

(U ,V ) ∈ Ecom[2a ] (U ′,V ′) ∈ Echal[2a ]([n]U ′, [n]V ′)

EchalEchalφrsp
[n]

▶ If n2q ≤ 2a , then σ′ = (n2q, [n]U ′, [n]V ′) is a valid signature too

▶ Checking square-freeness of q is not enough as φrsp may contain a cyclic ℓm -isogeny

⇒ Non-Malleable version of SQIsignHD?

8 / 12



Non-Malleability: Return of the Lollipop

Observation

For Ins-Auth the signature needs to be non-malleable

ct = (ctKEM, σ) =⇒ ct′ = (ctKEM, σ
′)

In SQIsignHD, the signature is interpolation data σ = (q,U ′,V ′)

Ecom

(U ,V ) ∈ Ecom[2a ] (U ′,V ′) ∈ Echal[2a ]([n]U ′, [n]V ′)

EchalEchalφrsp
[n]

▶ If n2q ≤ 2a , then σ′ = (n2q, [n]U ′, [n]V ′) is a valid signature too

▶ Checking square-freeness of q is not enough as φrsp may contain a cyclic ℓm -isogeny

⇒ Non-Malleable version of SQIsignHD?

8 / 12



Non-Malleability: Return of the Lollipop

Observation

For Ins-Auth the signature needs to be non-malleable

ct = (ctKEM, σ) =⇒ ct′ = (ctKEM, σ
′)

In SQIsignHD, the signature is interpolation data σ = (q,U ′,V ′)

Ecom

(U ,V ) ∈ Ecom[2a ] (U ′,V ′) ∈ Echal[2a ]([n]U ′, [n]V ′)

EchalEchalφrsp
[n]

▶ If n2q ≤ 2a , then σ′ = (n2q, [n]U ′, [n]V ′) is a valid signature too

▶ Checking square-freeness of q is not enough as φrsp may contain a cyclic ℓm -isogeny

⇒ Non-Malleable version of SQIsignHD?

8 / 12



Non-Malleable SQIsignHD

It would be desirable to check cyclicity of HD-represented isogenies

Bad News
So far, a generic cyclicity check seems out of reach

Good News
We don’t need a generic cyclicity check!

Idea:

▶ During signing: require minimum length q ≥ 2a/ log p

▶ During verification: evaluate φrsp on Ecom[n] for all prime n ≤
√

log p and see if it vanishes

▶ cannot append small scalar multiplication

▶ Large(r) scalar multiplication already exceeds the available 2a -torsion

▶ Experiments suggest: rejection probability 1/1000

9 / 12



Non-Malleable SQIsignHD

It would be desirable to check cyclicity of HD-represented isogenies

Bad News
So far, a generic cyclicity check seems out of reach

Good News
We don’t need a generic cyclicity check!

Idea:

▶ During signing: require minimum length q ≥ 2a/ log p

▶ During verification: evaluate φrsp on Ecom[n] for all prime n ≤
√

log p and see if it vanishes

▶ cannot append small scalar multiplication

▶ Large(r) scalar multiplication already exceeds the available 2a -torsion

▶ Experiments suggest: rejection probability 1/1000

9 / 12



Non-Malleable SQIsignHD

It would be desirable to check cyclicity of HD-represented isogenies

Bad News
So far, a generic cyclicity check seems out of reach

Good News
We don’t need a generic cyclicity check!

Idea:

▶ During signing: require minimum length q ≥ 2a/ log p

▶ During verification: evaluate φrsp on Ecom[n] for all prime n ≤
√

log p and see if it vanishes

▶ cannot append small scalar multiplication

▶ Large(r) scalar multiplication already exceeds the available 2a -torsion

▶ Experiments suggest: rejection probability 1/1000

9 / 12



Non-Malleable SQIsignHD

It would be desirable to check cyclicity of HD-represented isogenies

Bad News
So far, a generic cyclicity check seems out of reach

Good News
We don’t need a generic cyclicity check!

Idea:

▶ During signing: require minimum length q ≥ 2a/ log p

▶ During verification: evaluate φrsp on Ecom[n] for all prime n ≤
√

log p and see if it vanishes

▶ cannot append small scalar multiplication

▶ Large(r) scalar multiplication already exceeds the available 2a -torsion

▶ Experiments suggest: rejection probability 1/1000

Ecom Echal

Available torsion

φrsp

Echalφrsp

degψ ≤ log p

9 / 12



Non-Malleable SQIsignHD

It would be desirable to check cyclicity of HD-represented isogenies

Bad News
So far, a generic cyclicity check seems out of reach

Good News
We don’t need a generic cyclicity check!

Idea:

▶ During signing: require minimum length q ≥ 2a/ log p

▶ During verification: evaluate φrsp on Ecom[n] for all prime n ≤
√

log p and see if it vanishes

▶ cannot append small scalar multiplication

▶ Large(r) scalar multiplication already exceeds the available 2a -torsion

▶ Experiments suggest: rejection probability 1/1000

Ecom φrsp
Echalφrsp

degψ ≤ log p

9 / 12



Non-Malleable SQIsignHD

It would be desirable to check cyclicity of HD-represented isogenies

Bad News
So far, a generic cyclicity check seems out of reach

Good News
We don’t need a generic cyclicity check!

Idea:

▶ During signing: require minimum length q ≥ 2a/ log p

▶ During verification: evaluate φrsp on Ecom[n] for all prime n ≤
√

log p and see if it vanishes

▶ cannot append small scalar multiplication

▶ Large(r) scalar multiplication already exceeds the available 2a -torsion

▶ Experiments suggest: rejection probability 1/1000

Ecom φrsp
Echalφrsp

degψ ≤ log p

9 / 12



Non-Malleable SQIsignHD

It would be desirable to check cyclicity of HD-represented isogenies

Bad News
So far, a generic cyclicity check seems out of reach

Good News
We don’t need a generic cyclicity check!

Idea:

▶ During signing: require minimum length q ≥ 2a/ log p

▶ During verification: evaluate φrsp on Ecom[n] for all prime n ≤
√

log p and see if it vanishes
▶ cannot append small scalar multiplication

▶ Large(r) scalar multiplication already exceeds the available 2a -torsion

▶ Experiments suggest: rejection probability 1/1000

Ecom φrsp
Echalφrsp

degψ ≤ log p

9 / 12



Non-Malleable SQIsignHD

It would be desirable to check cyclicity of HD-represented isogenies

Bad News
So far, a generic cyclicity check seems out of reach

Good News
We don’t need a generic cyclicity check!

Idea:

▶ During signing: require minimum length q ≥ 2a/ log p

▶ During verification: evaluate φrsp on Ecom[n] for all prime n ≤
√

log p and see if it vanishes
▶ cannot append small scalar multiplication

▶ Large(r) scalar multiplication already exceeds the available 2a -torsion

▶ Experiments suggest: rejection probability 1/1000

Ecom φrsp
Echalφrsp

degψ ≤ log p

9 / 12



Non-Malleable SQIsignHD

It would be desirable to check cyclicity of HD-represented isogenies

Bad News
So far, a generic cyclicity check seems out of reach

Good News
We don’t need a generic cyclicity check!

Idea:

▶ During signing: require minimum length q ≥ 2a/ log p

▶ During verification: evaluate φrsp on Ecom[n] for all prime n ≤
√

log p and see if it vanishes
▶ cannot append small scalar multiplication

▶ Large(r) scalar multiplication already exceeds the available 2a -torsion

▶ Experiments suggest: rejection probability 1/1000

Ecom φrsp
Echalφrsp

degψ ≤ log p

9 / 12



Non-Malleable SQIsignHD

It would be desirable to check cyclicity of HD-represented isogenies

Bad News
So far, a generic cyclicity check seems out of reach

Good News
We don’t need a generic cyclicity check!

Idea:

▶ During signing: require minimum length q ≥ 2a/ log p

▶ During verification: evaluate φrsp on Ecom[n] for all prime n ≤
√

log p and see if it vanishes
▶ cannot append small scalar multiplication

▶ Large(r) scalar multiplication already exceeds the available 2a -torsion

▶ Experiments suggest: rejection probability 1/1000

Non-Malleability of SQIsignHD

For any NM adversary A against a slight modification of SQIsignHD, there exist adversaries B against
OneEnd and C against Cyclic RUGDIO indistinguishability (CR-IND) such that

AdvNM(A) ≤ AdvOneEnd(B) + qTrans · AdvCR-IND(C).

9 / 12



Authenticity of SnakeM

Theorem

For any Ins-Aut adversary A against SnakeM, there exist an adversary B against SS-Enc and an adversary
C against NM-Enc such that

AdvIns-Aut
SnakeM(A) ≤ +AdvSS-Enc

POKÉ,SQIsignHD(B) + AdvNM-Enc
POKÉ,SQIsignHD(C) + δ.

▶ NM: Given pkID and transcripts T = {(comi , chali , rspi )}, compute (com′, chal′, rsp′) /∈ T

▶ NM-Enc: Additional Enc oracle that provides a consistent “POKÉ part” of the SnakeM ciphertext:

Esig

φchal

Echal

σ = (q, φrsp(U ), φrsp(V ))

φcom

(P2,Q2) ∈ Eenc

φ′
com

(P3,Q3) ∈ Ect

φskEnc

φ′
skEnc

Adversary can decrypt :(

10 / 12



Authenticity of SnakeM

Theorem

For any Ins-Aut adversary A against SnakeM, there exist an adversary B against SS-Enc and an adversary
C against NM-Enc such that

AdvIns-Aut
SnakeM(A) ≤ +AdvSS-Enc

POKÉ,SQIsignHD(B) + AdvNM-Enc
POKÉ,SQIsignHD(C) + δ.

▶ NM: Given pkID and transcripts T = {(comi , chali , rspi )}, compute (com′, chal′, rsp′) /∈ T

▶ NM-Enc: Additional Enc oracle that provides a consistent “POKÉ part” of the SnakeM ciphertext:

Esig

φchal

Echal

σ = (q, φrsp(U ), φrsp(V ))

φcom

(P2,Q2) ∈ Eenc

φ′
com

(P3,Q3) ∈ Ect

φskEnc

φ′
skEnc

Adversary can decrypt :(

10 / 12



Authenticity of SnakeM

Theorem

For any Ins-Aut adversary A against SnakeM, there exist an adversary B against SS-Enc and an adversary
C against NM-Enc such that

AdvIns-Aut
SnakeM(A) ≤ +AdvSS-Enc

POKÉ,SQIsignHD(B) + AdvNM-Enc
POKÉ,SQIsignHD(C) + δ.

▶ NM: Given pkID and transcripts T = {(comi , chali , rspi )}, compute (com′, chal′, rsp′) /∈ T

▶ NM-Enc: Additional Enc oracle that provides a consistent “POKÉ part” of the SnakeM ciphertext:

Esig

φchal

Echal

σ = (q, φrsp(U ), φrsp(V ))

φcom

(P2,Q2) ∈ Eenc

φ′
com

(P3,Q3) ∈ Ect

φskEnc

φ′
skEnc

Adversary can decrypt :(

10 / 12



Authenticity of SnakeM

Theorem

For any Ins-Aut adversary A against SnakeM, there exist an adversary B against SS-Enc and an adversary
C against NM-Enc such that

AdvIns-Aut
SnakeM(A) ≤ +AdvSS-Enc

POKÉ,SQIsignHD(B) + AdvNM-Enc
POKÉ,SQIsignHD(C) + δ.

▶ NM: Given pkID and transcripts T = {(comi , chali , rspi )}, compute (com′, chal′, rsp′) /∈ T

▶ NM-Enc: Additional Enc oracle that provides a consistent “POKÉ part” of the SnakeM ciphertext:

Esig

φchal

Echal

(P0,Q0) ∈ E0

(P2,Q2) ∈ Ecom

σ = (q, φrsp(U ), φrsp(V ))

φcom

(P2,Q2) ∈ Eenc

φ′
com

(P3,Q3) ∈ Ect

φskEnc

φ′
skEnc

Adversary can decrypt :(

10 / 12



Authenticity of SnakeM

Theorem

For any Ins-Aut adversary A against SnakeM, there exist an adversary B against SS-Enc and an adversary
C against NM-Enc such that

AdvIns-Aut
SnakeM(A) ≤ +AdvSS-Enc

POKÉ,SQIsignHD(B) + AdvNM-Enc
POKÉ,SQIsignHD(C) + δ.

▶ NM: Given pkID and transcripts T = {(comi , chali , rspi )}, compute (com′, chal′, rsp′) /∈ T

▶ NM-Enc: Additional Enc oracle that provides a consistent “POKÉ part” of the SnakeM ciphertext:

Esig

φchal

Echal

(P0,Q0) ∈ E0

(P2,Q2) ∈ Ecom

σ = (q, φrsp(U ), φrsp(V ))

φcom

(P2,Q2) ∈ Eenc

φ′
com

(P3,Q3) ∈ Ect

φskEnc

φ′
skEnc

Adversary can decrypt :(

10 / 12



Authenticity of SnakeM

Theorem

For any Ins-Aut adversary A against SnakeM, there exist an adversary B against SS-Enc and an adversary
C against NM-Enc such that

AdvIns-Aut
SnakeM(A) ≤ +AdvSS-Enc

POKÉ,SQIsignHD(B) + AdvNM-Enc
POKÉ,SQIsignHD(C) + δ.

▶ NM: Given pkID and transcripts T = {(comi , chali , rspi )}, compute (com′, chal′, rsp′) /∈ T

▶ NM-Enc: Additional Enc oracle that provides a consistent “POKÉ part” of the SnakeM ciphertext:

Esig

φchal

Echal

(P0,Q0) ∈ E0

(P2,Q2) ∈ Ecom

σ = (q, φrsp(U ), φrsp(V ))

φcom

(P2,Q2) ∈ Eenc

φ′
com

(P3,Q3) ∈ Ect

φskEnc

φ′
skEnc

Adversary can decrypt :(

10 / 12



Compactness – Is It Worth It?

Scheme (variant) Confidentiality Authenticity Deniability PQ
Size (in bytes)
ct pk

Group-based
DH-AKEM [ABH+21] Ins-CCA Out-Aut DR∗ ✗ 32 32
Zheng [Zhe97, BSZ02] Ins-CCA Ins-Aut HR∗ ✗ 64 64
Lattice-based
EtStH-AKEM (BAT + Antrag) [AJKL23] Ins-CCA Out-Aut — ✓ 1 119 1 417
NIKE-AKEM (Swoosh) [AJKL23] Ins-CCA Out-Aut DR∗ ✓ > 221 184 > 221 184
EaNtH-AKEM (BAT + Swoosh) Ins-CCA Out-Aut DR∗ ✓ 473 > 221 705
FrodoKEX+ [CHN+24b] IND-1BatchCCA UNF-1KCA DR ✓ 72 21 300
Den. AKEM (BAT + Gandalf) [GJK24] Ins-CCA Out-Aut HR & DR ✓ 1 749 1 417
Isogeny-based
EtStH-AKEM (POKÉ + SQIsignHD) [AJKL23] Ins-CCA Out-Aut — ✓ 493 432
NIKE-AKEM (CSIDH) [AJKL23] Ins-CCA Out-Aut DR∗ ✓ 256† 256†

EaNtH-AKEM (POKÉ + CSIDH) Ins-CCA Out-Aut DR∗ ✓ 384 624
Den. AKEM (POKÉ + Erebor) [GJK24] Ins-CCA Out-Aut HR & DR ✓ 740 432
SnakeM Ins-CCA Ins-Aut HR ✓ 296 368

11 / 12



Open Questions

Cryptanalysis

▶ OW-KCA of POKÉ + Countermeasures

▶ Additional Enc oracle in SS and NM

Other Constructions

▶ Though there are already some ideas...

Better Security Proof

▶ Reduce NM-Enc and SS-Enc to (more) standard assumptions

▶ Maybe in an Algebraic Isogeny Model

12 / 12



Questions?
☞ meers.org

✉ research@meers.org



References I

[ABF12] Afonso Arriaga, Manuel Barbosa, and Pooya Farshim. On the joint security of signature and
encryption schemes under randomness reuse: Efficiency and security amplification. pages
206–223, 2012.

[ABH+21] Joël Alwen, Bruno Blanchet, Eduard Hauck, Eike Kiltz, Benjamin Lipp, and Doreen Riepel.
Analysing the HPKE standard. pages 87–116, 2021.

[AJKL23] Joël Alwen, Jonas Janneck, Eike Kiltz, and Benjamin Lipp. The pre-shared key modes of
HPKE. pages 329–360, 2023.

[BSZ02] Joonsang Baek, Ron Steinfeld, and Yuliang Zheng. Formal proofs for the security of
signcryption. pages 80–98, 2002.

[CHN+24a] Daniel Collins, Loïs Huguenin-Dumittan, Ngoc Khanh Nguyen, Nicolas Rolin, and Serge
Vaudenay. K-waay: Fast and deniable post-quantum X3DH without ring signatures. 2024.

[CHN+24b] Daniel Collins, Loïs Huguenin-Dumittan, Ngoc Khanh Nguyen, Nicolas Rolin, and Serge
Vaudenay. K-waay: Fast and deniable post-quantum X3DH without ring signatures.
Cryptology ePrint Archive, Report 2024/120, 2024.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. pages 537–554, 1999.

12 / 12



References II

[GJK24] Phillip Gajland, Jonas Janneck, and Eike Kiltz. Ring signatures for deniable AKEM:
Gandalf’s fellowship. pages 305–338, 2024.

[GPST16] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On the security of
supersingular isogeny cryptosystems. pages 63–91, 2016.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the
Fujisaki-Okamoto transformation. pages 341–371, 2017.

[MOXZ24] Tomoki Moriya, Hiroshi Onuki, Maozhi Xu, and Guoqing Zhou. Adaptive attacks against
FESTA without input validation or constant-time implementation. pages 3–19, 2024.

[Zhe97] Yuliang Zheng. Digital signcryption or how to achieve cost(signature & encryption) ≪
cost(signature) + cost(encryption). pages 165–179, 1997.

12 / 12



SnakeM in Detail

12 / 12


	References

