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» This Work: Split Ciphertext KEM + Identification Scheme (DH-AKEM [ABF12], SnakeM)
I Split Ciphertext KEM # Split KEM

Split Ciphertext KEM
Given ID-Scheme ID, a Split Ciphertext KEM KEM requires

(ct, k) & KEM.Enc(pk), ct = (cto,ct1), cto € Im(ID.Com).
= Reusing the commitment leads to a more compact scheme than plain KEM + Signature
= Our generic construction SnakeM can be instantiated from isogenies
= SnakeM is only 5x larger than DH-AKEM (64 vs. 296 Bytes) — naive approach 370 Bytes
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Use B-SIDH approach for a more compact scheme with p € O(22*)

(p+1)(p-1)=2"ND, 2°€0(2), N=[[tecoeE®, D=apaco@)
——

HD representation

A / A shared key
rational isogenies

» Commitment isogeny is now rational
» N € O(p) to ensure good distribution of the commitment curve

» D smooth enough to allow for point compression

p=2183.36.72.174.472.3112 . 3672 - 4392 - 10492 - 1373 — 1
log p = 247, max{¢;} = 1373, max{log ¢;} = 39
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Confidentiality: Ins-CCA, simplified

(sk*, pk*) & Gen pk*
64 (0,1} & o
(ct, k) <& Encaps(sk, pk*) (ct, k) .
if B=1 ” b !
ke$ Challenger Adversary

win if b = b’

Note
sk is used for the signature and should not help to decapsulate the KEM part of ct
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Confidentiality of SnakeM

Theorem

For any Ins-CCA adversary A against SnakeM, there exist an adversary B against OW-KCA of POKE such
that

_CC OW-KC
AdV!SnIs]akeﬁ/[ (A) < Advpvc\;I?EA(B) 4 @
» OW-KCA: Compute the shared key given access to an key-checking oracle

O*(ct, k) — 1 if ct contains key k

Why OW-KCA when POKE is IND-CCA secure? We cannot use Fujisaki-Okamoto Transform :(

Fujisaki-Okamoto Transform [FO99, HHK17]

T-Transform U-Transform

IND-CPA’ ———— OW-KCA —— = |IND-CCA

» T-Transform makes the encryption randomness explicit = leaks commitment

» We include checks to avoid adaptive attacks like [GPST16, MOXZ24]
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Authenticity: Ins-Auth, simplified

(sk*, pk*) < Gen pk*

if ct not fresh: @

abort sk, ct

k <& Decaps(pk*, sk, ct)

win if k£ # L Challenger Adversary

Note

An honest Decaps checks the signature against pk* and returns L if the signature is invalid
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Non-Malleable SQIsignHD

It would be desirable to check cyclicity of HD-represented isogenies

So far, a generic cyclicity check seems out of reach We don’t need a generic cyclicity check!
Idea:

» During signing: require minimum length ¢ > 2%/logp

» During verification: evaluate ¢rsp on Ecom[n] for all prime n < v/logp and see if it vanishes
» cannot append small scalar multiplication

» Large(r) scalar multiplication already exceeds the available 2*-torsion

» Experiments suggest: rejection probability 1/1000

Non-Malleability of SQIsignHD

For any NM adversary A against a slight modification of SQIsignHD, there exist adversaries B against
OneEnd and C against Cyclic RUGDIO indistinguishability (CR-IND) such that

AdVNM(A) < AdeneEnd(B) + GTrans * AdVCR—IND(C).
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Authenticity of SnakeM

For any Ins-Aut adversary A against SnakeM, there exist an adversary B against SS-Enc and an adversary
C against NM-Enc such that

Ins-Aut SS-Enc NM-Enc
AdvghakeMm (A) < +AdVPOKE,SQIsignHD (B) + AdVPOKE,SQIsignHD () +54.
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AdvghakeMm (A) < +AdVPOKE,SQIsignHD (B) + AdVPOKE,SQIsignHD () +54.

» NM: Given pkjp and transcripts 7 = {(com;, chal;, rsp;)}, compute (com’,chal’,rsp’) ¢ T
» NM-Enc: Additional Enc oracle that provides a consistent “POKE part” of the SnakeM ciphertext:

(P2, Q2) € Eenc (Po, Qo) € Eo Esig
* < . )

Adversary can decrypt :( Pehal

= (¢, prsp(U), prsp(V))
* <« . .
(P3, Q3) € Ect (P2, Q2) € Ecom Echal
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Compactness — Is It Worth It?

Scheme (variant) Confidentiality Authenticity ‘ Deniability ‘ PQ } p ‘ ok ‘

Group-based

DH-AKEM [ABH¥21] [ Ins-CCA | Out-Aut | DR* [ x ] 32 | 32
Zheng [Zhe97, BSZ02] | Ins-CCA | Ins-Aut | HR* | x| 64 | 64
Lattice-based

ETSTH-AKEM (BAT + ANTRAG) [AJKL23] Ins-CCA Out-Aut — v 1119 1417
NIKE-AKEM (SwoosH) [AJKL23] Ins-CCA Out-Aut DR* /| >221184 | > 221184
EANTH-AKEM (BAT + SwoosH) Ins-CCA Out-Aut DR* v 473 | > 221705
FrRODOKEX+ [CHN*24b] IND-1BatchCCA | UNF-1KCA DR v 72 21 300
DeEN. AKEM (BAT + GANDALF) [GJK24] Ins-CCA Out-Aut HR & DR v 1749 1417
Isogeny-based

ETSTH-AKEM (POKE + SQISIGNHD) [AJKL23] | Ins-CCA Out-Aut — v 493 432
NIKE-AKEM (CSIDH) [AJKL23] Ins-CCA Out-Aut DR" v 2567 2567
EANTH-AKEM (POKE + CSIDH) Ins-CCA Out-Aut DR* v 384 624
DEN. AKEM (POKE + EREBOR) [GJK24] Ins-CCA Out-Aut HR & DR v 740 432
SnakeM Ins-CCA Ins-Aut HR v 296 368
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Open Questions

Cryptanalysis

» OW-KCA of POKE + Countermeasures
» Additional Enc oracle in SS and NM

Other Constructions
» Though there are already some ideas...
Better Security Proof

» Reduce NM-Enc and SS-Enc to (more) standard assumptions

» Maybe in an Algebraic Isogeny Model
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Questions?

I¥" meers.org
= research@meers.org
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SnakeM in Detail

00
01

SnakeM.Gen

(skkem, Pkyem) <& KEM.Gen
(skip, pkip) < 1D.Gen

s <& {0,1}"

sk (Sngm, Sk|D, S)

pk = (pkyewm: Pkip)

return (sk, pk)

SnakeM.Encaps(sksnp, Pkgey)

06
07
08
09
10
11
1
13
14
15
16
17

N

parse sksnp = (-, skip, )

parse pkrey = (Pkken: )

pkip < derive(skip)

pkenp < derive(sksnp)

(com, R) < ID.Com \\ com = cto
(ct1, K) <~ KEM.Encaps, (pkeem, R)
(chl, pad) < G(pkjp, com, pkgey, ct1, K)
rsp <% ID.Rsp(skip, com, chl, R)

Ctrsp <— rsp @ pad

ct < (com, cty, Ctrsp)

k < H(K, com, ct1, rsp, pksnp, PKrev)
return (ct, k)

SnakeM.Decaps(pksyp, Skrev, ct)

18
19
20
21
22
23
24
25
26
27
28
29
30

parse pkeyp = (- Pkip)

parse skrcy = (skkem, +, S)

parse ct = (com, cty, Ctrsp)

pkgey < derive(skrev)

K + KEM.Decaps(skkem, com, cty)

if K =1 \\ Decaps may fail
K <+s

(chl, pad) + G(pkjp, com, pkgey, ct1, K)

rsp <— Ctrsp B pad

if 1D.Ver(pk,p, com,chl,rsp) = 1:
k <= H(K, com, cty, rsp, pksnp, Pkrey)
return k

return |
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