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AKEM
Authenticated Key

Encapsulation Mechanism



Definition

Alice Bob

Judie

(skA, pkA) $← Gen (skB , pkB ) $← Gen

pkA pkB

ct

(ct, k) $← Enc(skA, pkB ) k ← Dec(skB , pkA, ct)

✗

▶ Confidentiality: Only Alice and Bob know k

▶ Authenticity: Bob knows that Alice sent ct

▶ Deniability: Judie cannot be convinced that Alice sent ct
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Generic Constructions

▶ KEM + (Ring) Signature (FrodoKEX+ [CHN+24a], Gandalf-AKEM [GJK24])

▶ Double NIKE (DH, CSIDH) [AJKL23]

▶ This Work: Split Ciphertext KEM + Identification Scheme (DH-AKEM [ABF12], SnakeM)

Split Ciphertext KEM ̸= Split KEM

Split Ciphertext KEM

Given ID-Scheme ID, a Split Ciphertext KEM KEM requires

(ct, k) $← KEM.Enc(pk), ct = (ct0, ct1), ct0 ∈ Im(ID.Com).

⇒ Reusing the commitment leads to a more compact scheme than plain KEM + Signature

⇒ Our generic construction SnakeM can be instantiated from isogenies

⇒ SnakeM is only 5× larger than DH-AKEM (64 vs. 296 Bytes) – naive approach 370 Bytes
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Snake Mackerel = POKÉ + SQIsignHD

E0

non-rational

secret

Esig

Ecom Echal

σ = (q, φrsp(U ), φrsp(V ))

X0 ∈ E0[D ]

E0Eenc

X1 = [α]φskEnc(X0)

E3

X2 = [β]φ(X0)X3 = [β]φ′(X1)

= [α]φ′
skEnc(X2)

Ect

E0

Ecom

φcom

σ = (q, φrsp(U ), φrsp(V ))φ′
skEnc

φskSigφskEnc

φ′
com

X2 = [β]φ(X0)
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Compatibility

SQIsignHD and POKÉ use primes p = c2a3b − 1, but with different sizes

POKÉ: 3b ≈ 22λ SQIsignHD: 3b ≈ 2λ

Use B-SIDH approach for a more compact scheme with p ∈ O(22λ)

(p + 1)(p − 1) = 2aND , 2a ∈ O(2λ)︸ ︷︷ ︸

HD representation

, N =
∏

ℓi ∈ O(22λ)︸ ︷︷ ︸

rational isogenies

, D = q1q2q3 ∈ O(2λ)︸ ︷︷ ︸

shared key

▶ Commitment isogeny is now rational

▶ N ∈ O(p) to ensure good distribution of the commitment curve

▶ D smooth enough to allow for point compression

p = 2133 · 36 · 72 · 174 · 472 · 3112 · 3672 · 4392 · 10492 · 1373− 1
log p = 247, max{ℓi} = 1373, max{log qi} = 39
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Security
The Best out of Both Worlds?



Confidentiality: Ins-CCA, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!I will send an honest message
on your behalf to myself

skβ $← {0, 1}

(ct, k) $← Encaps(sk, pk⋆)

if β = 1

k ← $

win if b = b′

(ct, k)

b′

Note

sk is used for the signature and should not help to decapsulate the KEM part of ct
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Confidentiality of SnakeM

Theorem

For any Ins-CCA adversary A against SnakeM, there exist an adversary B against OW-KCA of POKÉ such
that

AdvIns-CCA
SnakeM(A) ≤ AdvOW-KCA

POKÉ (B) + δ.

▶ OW-KCA: Compute the shared key given access to an key-checking oracle

Okc(ct, k)→ 1 if ct contains key k

Why OW-KCA when POKÉ is IND-CCA secure? We cannot use Fujisaki-Okamoto Transform :(

Fujisaki-Okamoto Transform [FO99, HHK17]

IND-CPA T-Transform=========⇒ OW-KCA U-Transform=========⇒ IND-CCA

▶ T-Transform makes the encryption randomness explicit =⇒ leaks commitment

▶ We include checks to avoid adaptive attacks like [GPST16, MOXZ24]
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Authenticity: Ins-Auth, simplified

Challenger Adversary

(sk⋆, pk⋆) $← Gen

pk⋆

pk⋆

Send me a ciphertext!

pk(ct, k) $← Encaps(sk⋆, pk)
(ct, k)

I sent you something.
Decapsulate and send the result!

pk, ctk ← Decaps(pk, sk⋆, ct)

k

I’m ready!Try to send a fresh
ciphertext on my behalf!

sk, ct

if ct not fresh:

abort

k $← Decaps(pk⋆, sk, ct)

win if k ̸= ⊥

Note

An honest Decaps checks the signature against pk⋆ and returns ⊥ if the signature is invalid
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Non-Malleability: Return of the Lollipop

Observation

For Ins-Auth the signature needs to be non-malleable

ct = (ctKEM, σ) =⇒ ct′ = (ctKEM, σ
′)

In SQIsignHD, the signature is interpolation data σ = (q,U ′,V ′)

Ecom

(U ,V ) ∈ Ecom[2a ] (U ′,V ′) ∈ Echal[2a ]([n]U ′, [n]V ′)

EchalEchalφrsp
[n]

▶ If n2q ≤ 2a , then σ′ = (n2q, [n]U ′, [n]V ′) is a valid signature too

▶ Checking square-freeness of q is not enough as φrsp may contain a cyclic ℓm -isogeny

⇒ Non-Malleable version of SQIsignHD?
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Non-Malleable SQIsignHD

It would be desirable to check cyclicity of HD-represented isogenies

Bad News
So far, a generic cyclicity check seems out of reach

Good News
We don’t need a generic cyclicity check!

Idea:

▶ During signing: require minimum length q ≥ 2a/ log p

▶ During verification: evaluate φrsp on Ecom[n] for all prime n ≤
√

log p and see if it vanishes

▶ cannot append small scalar multiplication

▶ Large(r) scalar multiplication already exceeds the available 2a -torsion

▶ Experiments suggest: rejection probability 1/1000
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Bad News
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Good News
We don’t need a generic cyclicity check!

Idea:

▶ During signing: require minimum length q ≥ 2a/ log p

▶ During verification: evaluate φrsp on Ecom[n] for all prime n ≤
√

log p and see if it vanishes
▶ cannot append small scalar multiplication

▶ Large(r) scalar multiplication already exceeds the available 2a -torsion

▶ Experiments suggest: rejection probability 1/1000

Non-Malleability of SQIsignHD

For any NM adversary A against a slight modification of SQIsignHD, there exist adversaries B against
OneEnd and C against Cyclic RUGDIO indistinguishability (CR-IND) such that

AdvNM(A) ≤ AdvOneEnd(B) + qTrans · AdvCR-IND(C).
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Authenticity of SnakeM

Theorem

For any Ins-Aut adversary A against SnakeM, there exist an adversary B against SS-Enc and an adversary
C against NM-Enc such that

AdvIns-Aut
SnakeM(A) ≤ +AdvSS-Enc

POKÉ,SQIsignHD(B) + AdvNM-Enc
POKÉ,SQIsignHD(C) + δ.

▶ NM: Given pkID and transcripts T = {(comi , chali , rspi )}, compute (com′, chal′, rsp′) /∈ T

▶ NM-Enc: Additional Enc oracle that provides a consistent “POKÉ part” of the SnakeM ciphertext:

Esig

φchal

Echal

σ = (q, φrsp(U ), φrsp(V ))

φcom

(P2,Q2) ∈ Eenc

φ′
com

(P3,Q3) ∈ Ect

φskEnc

φ′
skEnc

Adversary can decrypt :(
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Compactness – Is It Worth It?

Scheme (variant) Confidentiality Authenticity Deniability PQ
Size (in bytes)
ct pk

Group-based
DH-AKEM [ABH+21] Ins-CCA Out-Aut DR∗ ✗ 32 32
Zheng [Zhe97, BSZ02] Ins-CCA Ins-Aut HR∗ ✗ 64 64
Lattice-based
EtStH-AKEM (BAT + Antrag) [AJKL23] Ins-CCA Out-Aut — ✓ 1 119 1 417
NIKE-AKEM (Swoosh) [AJKL23] Ins-CCA Out-Aut DR∗ ✓ > 221 184 > 221 184
EaNtH-AKEM (BAT + Swoosh) Ins-CCA Out-Aut DR∗ ✓ 473 > 221 705
FrodoKEX+ [CHN+24b] IND-1BatchCCA UNF-1KCA DR ✓ 72 21 300
Den. AKEM (BAT + Gandalf) [GJK24] Ins-CCA Out-Aut HR & DR ✓ 1 749 1 417
Isogeny-based
EtStH-AKEM (POKÉ + SQIsignHD) [AJKL23] Ins-CCA Out-Aut — ✓ 493 432
NIKE-AKEM (CSIDH) [AJKL23] Ins-CCA Out-Aut DR∗ ✓ 256† 256†

EaNtH-AKEM (POKÉ + CSIDH) Ins-CCA Out-Aut DR∗ ✓ 384 624
Den. AKEM (POKÉ + Erebor) [GJK24] Ins-CCA Out-Aut HR & DR ✓ 740 432
SnakeM Ins-CCA Ins-Aut HR ✓ 296 368
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Open Questions

Cryptanalysis

▶ OW-KCA of POKÉ + Countermeasures

▶ Additional Enc oracle in SS and NM

Other Constructions

▶ Though there are already some ideas...

Better Security Proof

▶ Reduce NM-Enc and SS-Enc to (more) standard assumptions

▶ Maybe in an Algebraic Isogeny Model
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Questions?
☞ meers.org

✉ research@meers.org
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