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Why study cycles in isogeny graphs

Let G (p, ℓ) be the supersingular ℓ-isogeny graph modulo p.

Why should we care about cycles in G (p, ℓ)?

1 Cycles provide security failures (i.e. CGL hash function) [1]

2 Cycles can be used to compute endomorphisms [2]

3 Cycles are fun!
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Orientations and Cycles

We are particularly interested in non-backtracking cycles:

Definition
Let ϕ1, . . . , ϕn be isogenies representing a cycle in G (p, ℓ). The
cycle is non-backtracking if ϕi+1 ◦ ϕi ̸= [ℓ] for all 1 ≤ i < n.

The paper Orientations and cycles in supersingular ℓ-isogeny
graphs [3] introduced “isogeny cycles”:

Definition
An isogeny cycle is a closed walk, forgetting basepoint, in
G (p, ℓ) containing no backtracking, which is not a power of
another closed walk.
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Orientations and Cycles

The main result of [3] establishes a bijection between isogeny
cycles in G (p, ℓ) and rims of oriented isogeny volcanoes:

Theorem
Let r > 2. There is a bijection between isogeny cycles of length
r and directed rims of size r in GK ,ℓ where K ranges over all
imaginary quadratic fields.

Corollary

Let p ≡ 1 (mod 12). Then the number of isogeny cycles of
length r in G (p, ℓ) is asymptotically ℓr/2r as r → ∞.
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Orientations and Cycles

Questions:

1 Where do these cycles live in G (p, ℓ)?

2 Can we remove the p ≡ 1 (mod 12) condition in Corollary
4?

3 Can we extend any of these results to other isogeny
graphs?
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The spine

In order to answer the question of where you can find cycles,
we need a reference point:

Definition
The spine of G (p, ℓ) is the subgraph induced by the Fp vertices.

Note: In a vague sense this is “all” you can use.

Basic question: How many cycles intersect the spine?
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Results

Theorem (O.)

Fix ℓ and r , r ̸= 2k . Let

R1 =
# vertices in Gℓ,p contained in an r-cycle

# of vertices in Gℓ,p
,

and

R2 =
# vertices in S contained in an r-cycle

# of vertices in S
.

Then for each sufficiently large p, either

1 R2 = 0, or,

2 R1 < R2.

In other words, for large enough primes p, r -cycles are
disproportionately likely to occur along the spine.
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Results

We will give formulas for

1 the number of r -cycles along the spine,

2 the average number of r -cycles as p → ∞.

Definition
Let

Xr = {imaginary quadratic discriminants ∆, where...}

1 ℓ = [l][l] in cl(O∆),

2 o([l]) | r ,
3 and the conductor of O∆ is not divisible by ℓ.
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Results

Definition
Let HO∆

(x) = Hilbert Class Polynomial of O∆. Define

δp(∆) =

{
1 if

(
∆
p

)
= −1 and HO∆

(x) has a solution in Fp,

0 otherwise.
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Theorem (O.)

Fix p, ℓ, r , with p ≫ 0. Then

#{r -cycles intersecting S} = 2
∑
d |r

µ(d)
∑

∆∈X r
d

δp(∆)h2(∆),

where h2(∆) = |cl(O∆)[2]|.
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Results

We can compute the average number of r -cycles along S:

Theorem (O.)

Fix ℓ, r . Let (pi )
∞
i=1 be an increasing sequence of consecutive

primes. Then

lim
n→∞

1

n

n∑
i=1

#{r -cycles intersecting Sℓ,pi} =
∑
d |r

µ(d)#X r
d
.
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Techniques

Restricting to odd r , we can outline our strategy as follows:

1 By results of [3], all r -cycles come from orders in Xr .

2 Lift the problem to the oriented isogeny graph.

3 Use Kaneko’s bound [4] to show that for large enough p,
all of the oriented r -cycles produce disjoint unoriented
cycles.

4 Show that, for sufficiently large p, each oriented r -cycle
contains at most one Fp-vertex.

Together, these give us:

r -cycles on S ↔ Fp roots of HO(x), for O ∈ Xr

.
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Example

Example: 3-cycles in G3,p.

By results of ACLSST [3], every 3-cycle in G3,p is obtained
from one of the following orders:

{−23,−44,−59,−83,−92,−104,−107}.
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Theorem (Kaneko [4])

Suppose that

OD1 ↪→ O and OD2 ↪→ O

for O a maximal order of Bp,∞. Then

D1D2 ≥ 4p.

If Q(
√
D1) = Q(

√
D2), then

D1D2 ≥ p2.

Using this gives that the 3-cycles in G3,p are disjoint for

p > (−104)(−107)
4 .
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Theorem (Chen & Xue [5])

Let Hp = {Fp roots of HO(x)}. If Hp ̸= ∅, then cl(O)[2] acts
freely and transitively on Hp.

Consequence: There are 2k many Fp-roots.
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Example

Let C be an 3-cycle intersecting S, and p ≫ 0:

1 Frobenius fixes the vertex set of C .

2 Thus there are 0 or 2 Fp2-vertices in C .

3 Each 3-cycle contains the same number of Fp-vertices.

4 The total number of Fp-vertices is a power of 2.

Thus there is exactly 1 Fp-vertex on C .
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Example

For p ≫ 0, we can count the Fp-vertices by counting the
Fp-vertices for each order in

{−23,−44,−59,−83,−92,−104,−107},

where p does not split.

Here we use either Chen and Xue [5], or Li, Li, and Ouyang [6].

Note: The number of such vertices depends only on
congruence conditions on p!
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Open questions

1 What is the “right” generalization to vertices that are
“near” the spine?

2 Can the same results be deduced from the recent paper of
He-Korpal-Tran-Vincent on Gross lattices of curves over
Fp?
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Ihara zeta functions

This part of the talk is joint work with Jun Bo Lau, Travis
Morrison, Gabrielle Scullard, and Lukas Zobernig.

A natural object to study the number of cycles in a graph G is
the Ihara zeta function:

Definition
Let G be an (undirected) graph. The Ihara zeta function of G
is the function

ζG (u) =
∏

prime cycles P

(1− u|P|)−1
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Morrison, Gabrielle Scullard, and Lukas Zobernig.

A natural object to study the number of cycles in a graph G is
the Ihara zeta function:

Definition
Let G be an (undirected) graph. The Ihara zeta function of G
is the function

ζG (u) =
∏

prime cycles P
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Ihara zeta functions

Facts about Ihara zeta functions:

1 u d
du log ζG (u) =

∑
m≥1Nmu

m, where Nm is the number of
non-backtracking cycles of length m.

2 (Bass determinant formula): Suppose that G is a
d-regular graph, and let A be the adjacency matrix of G .
Then we have:

ζG (u) =
(1− u2)1−χ(G)

det(I − Au + (d − 1)u2)
.
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Abstract isogeny graphs

We would like to study cycles not only in G (p, ℓ) but in other
isogeny graphs:

1 Level H-structure, G (p, ℓ,H)

2 Higher dimensional (ℓ, . . . , ℓ)-graphs

In order to study all of these at once, we introduce the notion
of an abstract isogeny graph.
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Abstract isogeny graphs

Definition
An abstract isogeny graph is the following collection of data:

• A set X of vertices;

• a set Y of edges;

• functions, s, t : Y → X × X ;

• a function J : Y → Y ; and

• a function L : X → X ,

such that J(s(e)) = t(e) and t(J(e)) = L(s(e)) for all e ∈ Y .
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Motivating abstract isogeny graphs

First, we should motivate the L function.

In the level structure
graph G (p, ℓ,H), the dual map takes ϕ : (E , ι) → (E ′, ι′) to
ϕ̂ : (E ′, ι′) → (E , [ℓ] ◦ ι).

But if H is a subgroup of GL2(Z/NZ) such that

(
ℓ 0
0 ℓ

)
/∈ H,

then (E , [ℓ] ◦ ι) ̸= (E , ι)!

The operator L keeps track of how the target of J depends on
the source of the edge.
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Motivating abstract isogeny graphs

Theorem (Bo Lau, Morrison, O., Scullard, Zobernig)

Choosing appropriate representatives for the dual map in order
to define J, we can realize G (p, ℓ,H) as an abstract isogeny
graph for any H. The same is true for (ℓ, . . . , ℓ)-isogeny graphs.
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Ihara zeta function for abstract
isogeny graphs

We define the Ihara zeta function of an abstract isogeny graph
as

ζG (u) =
∏

prime cycles P

(1− u|P|)−1,

where the primes are non-backtracking with respect to the J
function.

We will give the Ihara zeta function in two ways:

1 by combinatorial data,

2 by relation to zeta functions of modular curves.
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Ihara zeta function - combinatorial
formula

For a function f : S → S acting on a finite set S , we define
Ck(f ) to be the number of k-cycles in the largest permutation
induced by f .

Theorem (Bo Lau, Morrison, O., Scullard, Zobernig)

Let Γ = (X ,Y , J, L) be an abstract isogeny graph with regular
out degree d and adjacency matrix A. Then ζΓ(u) is given by:

(1− u2)C1(L)(1 + u)−C1(J)
∏
k>1

(1− (−1)ku2k)Ck (L)(1− uk)−Ck (J)

det(1− Au + u2(d − 1)L)
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Hasse-Weil Zeta functions

Our next goal is to relate Ihara zeta functions of abstract
isogeny graphs to Hasse Weil zeta functions of modular curves.
This will allow us to understand asymptotics of cycles in graphs
with level structure.

Definition
Let X be a smooth, irreducible, projective variety defined over
Fℓ. The Hasse-Weil zeta function for X is defined as:

Z (X , u) = exp

( ∞∑
n=1

#X (Fℓn)

n
un

)
=
∏
x∈[X ]

1

1− udeg(x)
,

where the product is defined over the closed points of X .
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Orientable graphs associated to
abstract isogeny

Our formula relating the Ihara zeta function to Hasse-Weil zeta
functions of modular curves will use the Euler characteristics of
some auxiliary graphs, the orientable graphs associated to an
abstract isogeny graph Γ.

Definition
Let Γ = (X ,Y , J, L) be an abstract isogeny graph. We define
∼X to be the smallest equivalence relation on X such that
x ∼X Lx for all x ∈ X , and ∼Y to be the smallest equivalence
relation on Y such that y ∼Y J2y for all y ∈ Y . The
orientable graphs associated to Γ are
Γ+ = (X/ ∼X ,Y / ∼Y −{[y ] : J[y ] = [y ]}, J) and
Γ− = (X/ ∼X ,Y / ∼Y ⊔{[y ] : J[y ] = [y ]}, J)
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Ihara zeta function - modular
curves formula

Theorem
Let G be the ℓ-isogeny graph with Borel level structure. Let
X0(pN)Fℓ

and X0(N)Fℓ
denote the modular curves over Fℓ.

Then we have that

Z (X0(pN)Fℓ
, u)Z (X0(N)Fℓ

, u)−2ζG (u) = (1+u)χ(G
−1)(1−u)χ(G

+1)

where G+1, G−1 are the orientable graphs associated to G.

Note: We can generalize this to much more general H.
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Asymptotics for graphs with level
structure in arbitrary characteristic

Finally, we use this product to deduce asymptotics for the
number of cycles of length r as r → ∞, for arbitrary p, and in
the presence of level structure.

Theorem (Bo Lau, Morrison, O., Scullard, Zobernig)

Let G be the ℓ-isogeny graph with Borel level structure, and Nr

be the number of non-backtracking tailless cycles of length r in
G. Then we have that

Nr = 2#X0(N)(Fℓr )−#X0(pN)(Fℓr )−χ(G+1)+(−1)r−1χ(G−1).
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Asymptotics for graphs with level
structure in arbitrary characteristic

The previous theorem gives the following asymptotic:

Theorem (Bo Lau, Morrison, O., Scullard, Zobernig)

Let G be the ℓ-isogeny graph with N-level structure for an
arbitrary prime p. Let Nr be the number of non-backtracking
cycles of length r in G. Then Nr asymptotically approaches ℓr

as r → ∞.
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The one proof

Proof.

1 By the product formula for the zeta functions, we have
constants C1,C2 such that

2#X0(N)(Fℓr )−#X0(pN)(Fℓr ) + C1 ≤ Nr

and

Nr ≤ 2#X0(N)(Fℓr )−#X0(pN)(Fℓr ) + C2.

2 By Hasse’s bound

#X0(pN)(Fℓr )/ℓ
r → 1

as r → ∞.

3 So Nr/ℓ
r → 2− 1 = 1 as r → ∞.
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Open questions

1 Can the formula for the Ihara zeta function of an abstract
isogeny graph be simplified? (in progress)

2 Can one give a version of the “graph theory prime number
theorem” for abstract isogeny graphs?

3 Can the zeta function product formula be generalized to
(ℓ, . . . , ℓ)-isogeny graphs?

4 Are there other interesting properties of isogeny graphs
that can be understood from their zeta functions?
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